PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 10 | 1463-1469
Tytuł artykułu

Legendre multiwavelet collocation method for solving the linear fractional time delay systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article the Legendre multiwavelet basis with aid of collocation method has been applied to give approximate solution for fractional delay systems. The properties of Legendre multiwavelet are presented. These properties together with the collocation method are then utilized to reduce the problem to the solution of algebraic system. Numerical results and comparison with exact solutions in the cases when we have exact solution are given in test examples in order to demonstrate the applicability and efficiency of the method.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
10
Strony
1463-1469
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
  • Department of Mathematics, Shahid Beheshti University, G.C. Tehran, Iran, s-yousefi@sbu.ac.ir
autor
  • Department of Mathematics, Shahid Beheshti University, G.C. Tehran, Iran
Bibliografia
  • [1] R.L. Bagley, P.J. Torvik, J. Rheol. 27, 201 (1983) http://dx.doi.org/10.1122/1.549724[Crossref]
  • [2] R.L. Bagley, P.J. Torvik, AIAA J. 23, 918 (1985) http://dx.doi.org/10.2514/3.9007[Crossref]
  • [3] R. L. Magin, Crit. Rev. Biomed. Eng. 32, 1 (2004) http://dx.doi.org/10.1615/CritRevBiomedEng.v32.10[Crossref]
  • [4] T. S. Chow, Phys. Lett. A. 342, 148 (2005) http://dx.doi.org/10.1016/j.physleta.2005.05.045[Crossref]
  • [5] M. Zamani, M. Karimi-Ghartemani, N. Sadati, Journal of Fractional Calculus and Applied Analysis (FCAA) 10, 169 (2007)
  • [6] J.A. Machado, Syst. Anal. Model. Sim. 27, 107 (1997)
  • [7] I.S. Jesus, J.A. Machado, Nonlinear Dynam. 54, 263 (2008) http://dx.doi.org/10.1007/s11071-007-9322-2[Crossref]
  • [8] I. Podlubny, IEEE T. Automat. Contr. 44, 208 (1999) http://dx.doi.org/10.1109/9.739144[Crossref]
  • [9] X. Zhang, Appl. Math. Comput. 197, 407 (2008) http://dx.doi.org/10.1016/j.amc.2007.07.069[Crossref]
  • [10] W. deng, C. Li, J. Lu, Nonlinear Dynam. 48, 409 (2007) http://dx.doi.org/10.1007/s11071-006-9094-0[Crossref]
  • [11] M. P. Lazarevic, A. M. Spasic, Math. Comput. Model. 49, 475 (2009) http://dx.doi.org/10.1016/j.mcm.2008.09.011[Crossref]
  • [12] C.K. Chui, Wavelets: A mathematical tool for signal analysis (SIAM, Philadelphia PA, 1997) http://dx.doi.org/10.1137/1.9780898719727[Crossref]
  • [13] Q. Ming, C. Hwang, Y.P. Shih, Int. J. Numer. Meth. Eng. 39, 2921 (1996) http://dx.doi.org/10.1002/(SICI)1097-0207(19960915)39:17<2921::AID-NME983>3.0.CO;2-D[Crossref]
  • [14] G. Beylkin, R. Coifman, V. Rokhlinn, Commun. Pur. Appl. Math. 44, 141 (1991) http://dx.doi.org/10.1002/cpa.3160440202[Crossref]
  • [15] S. A. Yousefi, A. Lotfi, M. Dehghan, J. Vib. Control 17, 2059 (2011) http://dx.doi.org/10.1177/1077546311399950[Crossref]
  • [16] A. Saadatmandi, M. Dehghan, J. Vib. Control 17, 2050 (2011) http://dx.doi.org/10.1177/1077546310395977[Crossref]
  • [17] S. A. Yousefi, Numer. Meth. Part. D. E. 26, 535 (2010)
  • [18] C. Canuto, M. Y. Hussaini, A. Quarternioni, T. A. Zang, Spectral methods in fluid dynamics (Springer-Verlag, Berlin, 1988) http://dx.doi.org/10.1007/978-3-642-84108-8[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0283-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.