PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 7 | 936-948
Tytuł artykułu

A pure geometric approach to stellar structure

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work represents a step in dealing with stellar structure using a pure geometric approach. Geometric field theory is used to construct a model for a spherically symmetric configuration. In this case, two solutions have been obtained for the field equations. The first represents an interior solution which may be considered as a pure geometric one in the sense that the tensor describing the material distributions is not a phenomenological object, but a part of the geometric structure used. A general equation of state for a perfect fluid, is obtained from, and not imposed on, the model. The second solution gives rise to Schwarzschild exterior field in its isotropic form. The two solutions are matched, at a certain boundary, to evaluate the constants of integration. The interior solution obtained shows that there are different zones characterizing the configuration: a central radiation dominant zone, a probable convection zone as a physical interpretation of the singularity of the model, and a corona like zone. The model may represent a type of main sequence stars. The present work shows that Einstein’s geometerization scheme can be extended to gain more physical information within material distribution, with some advantages.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
7
Strony
936-948
Opis fizyczny
Daty
wydano
2013-07-01
online
2013-10-17
Twórcy
autor
  • Mathematics Department, Faculty of Girls, Ain Shams University Heliopolis, Cairo, Egypt, samahammar@eun.eg
Bibliografia
  • [1] A. Einstein, The Meaning Of Relativity, 5th ed. (Priceton, 1955)
  • [2] R. Adler, M. Bazin, M. Schiffer, Introduction to General Relativity, 2nd. Ed., (McGraw-Hill, New York, 1975)
  • [3] F. I. Mikhail, Ain Shams Sci. Bul. 6, 87 (1962)
  • [4] M. I. Wanas, Stud. Cercet. Stiin. Ser. Mat. Univ. Bacau 10, 297 (2001)
  • [5] N. L. Youssef, A. M. Sid-Ahmed, Rep. Math. Phys. 60,1, 39 (2007) http://dx.doi.org/10.1016/S0034-4877(07)00020-1[Crossref]
  • [6] K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979) http://dx.doi.org/10.1103/PhysRevD.19.3524[Crossref]
  • [7] M. I. Wanas, S. A. Ammar, Mod. Phys. Lett. A. 25, 1705 (2010) http://dx.doi.org/10.1142/S0217732310032883[Crossref]
  • [8] P. Dolan, W. H. McCrea, Personal Communications (1963) [WoS]
  • [9] F. I. Mikhail, M. I. Wanas, Proc. Roy. Soc. Lond. A. 356, 471 (1977) http://dx.doi.org/10.1098/rspa.1977.0146[Crossref]
  • [10] H. P. Robertson, Ann. Math., Princeton (2), 33, 496 (1932) http://dx.doi.org/10.2307/1968531[Crossref]
  • [11] M. I. Wanas, Int. J. Theor. Phys. 24, 639 (1985) http://dx.doi.org/10.1007/BF00670469[Crossref]
  • [12] M. I. Wanas, Int. J. Geom. Methods. Mod. Phys. 4, 373 (2007) http://dx.doi.org/10.1142/S0219887807002144[Crossref]
  • [13] G. G. L. Nashed, Gen. Rel. Grav. 34, 1047 (2002) http://dx.doi.org/10.1023/A:1016509920499[Crossref]
  • [14] G. G. L. Nashed, Chaos, Solitons Fract. 15, 841 (2003) http://dx.doi.org/10.1016/S0960-0779(02)00168-6[Crossref]
  • [15] K. D. Abhyankar, Astrophysics: Stars and Galaxies (Tate McGraw-Hill, 1992)
  • [16] R. J. Tayler, The stars: their structure and evolution, 2nd ed. (Cambridge University, 1994) http://dx.doi.org/10.1017/CBO9781139170741[Crossref]
  • [17] S. L. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars (John Wiley and Sons, 1983) http://dx.doi.org/10.1002/9783527617661[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0278-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.