PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 10 | 1361-1365
Tytuł artykułu

RLC electrical circuit of non-integer order

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work a fractional differential equation for the electrical RLC circuit is studied. The order of the derivative being considered is 0 < γ ≤ 1. To keep the dimensionality of the physical quantities R, L and C an auxiliary parameter γ is introduced. This parameter characterizes the existence of fractional components in the system. It is shown that there is a relation between and σ through the physical parameters RLC of the circuit. Due to this relation, the analytical solution is given in terms of the Mittag-Leffler function depending on the order of the fractional differential equation.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
10
Strony
1361-1365
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
  • Departamento de Ingeniería Eléctrica, División de Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km, Comunidad de Palo Blanco, 36885, Salamanca Guanajuato, México, jgomez@ugto.mx
autor
  • Departamento de Ingeniería Eléctrica, División de Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km, Comunidad de Palo Blanco, 36885, Salamanca Guanajuato, México
autor
  • Departamento de Ingeniería Eléctrica, División de Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km, Comunidad de Palo Blanco, 36885, Salamanca Guanajuato, México
Bibliografia
  • [1] K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)
  • [2] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)
  • [3] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach Science Publishers, Langhorne, 1993)
  • [4] I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)
  • [5] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos (World Scientific, Singapore, 2012)
  • [6] W. Wyss, J. Math. Phys. 27, 2782 (1986) http://dx.doi.org/10.1063/1.527251[Crossref]
  • [7] R. Hilfer, J. Phys. Chem. B 104, 3914 (2000) http://dx.doi.org/10.1021/jp9936289[Crossref]
  • [8] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [9] R. Metzler, J. Klafter, J. Phys. A 37, R161 (2004) [PubMed]
  • [10] O.P. Agrawal, J.A. Tenreiro-Machado, I. Sabatier, Fractional Derivatives and Their Applications: Nonlinear Dynamics (Springer-Verlag, Berlin, 2004)
  • [11] R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [12] B.J. West, M. Bologna, P. Grigolini, Physics of Fractional Operators (Springer-Verlag, Berlin, 2003) http://dx.doi.org/10.1007/978-0-387-21746-8[Crossref]
  • [13] F. Gómez-Aguilar, J. Rosales-García, M. Guía-Calderón, J. Bernal-Alvarado, UNAM. XIII, 3 (2012)
  • [14] J.J. Rosales, M. Guía, J.F. Gómez, V.I. Tkach, Discontinuity, Nonlinearity and Complexity 4, 325 (2012)
  • [15] F. Gómez, J. Bernal, J. Rosales, T. Córdova, Journal of Electrical Bioimpedance 3, 2 (2012)
  • [16] R.L. Magin, Fractional calculus in Bioengineering (Begell House Publisher, Roddin, 2006)
  • [17] M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 134 (1971) http://dx.doi.org/10.1007/BF00879562[Crossref]
  • [18] S. Westerlund, Causality, University of Kalmar, Rep. No. 940426 (1994)
  • [19] D. Baleanu, Z.B. Günvenc, J.A. Tenreiro Machado, New Trends in Nanotechnology and Fractional Calculus Applications (Springer, London, 2010) http://dx.doi.org/10.1007/978-90-481-3293-5[Crossref]
  • [20] F. Riewe. Phys. Rev. E 53, 4098 (1996) http://dx.doi.org/10.1103/PhysRevE.53.4098[Crossref]
  • [21] A.E. Herzallah Mohamed, I. Muslih Sami, D. Baleanu, M. Rabei Eqab, Nonlinear Dynam. 66, 4 (2011)
  • [22] K. Golmankhaneh Alireza, M. Yengejeh Ali, D. Baleanu, Int. J. Theor Phys. 51, 9 (2012)
  • [23] K. Golmankhaneh Alireza, L. Lambert, Investigations in Dynamics: With Focus on Fractional Dynamics (Academic Publishing, Germany, 2012)
  • [24] I. Muslih Sami, M. Saddallah, D. Baleanu, E. Rabei, Romanian Journal of Physics. 55, 7 (2010)
  • [25] D. Baleanu, I. Muslih Sami, M. Rabei Eqab, Nonlinear Dynam. 53, 1 (2008) http://dx.doi.org/10.1007/s11071-007-9290-6[Crossref]
  • [26] V. Uchaikin, Fractional Derivatives for Physicists and Engineers (Springer, London, 2013) http://dx.doi.org/10.1007/978-3-642-33911-0[Crossref]
  • [27] B. Mandelbrot. The Fractal Geometry of Nature (Freeman, San Francisco, CA, 1982)
  • [28] A.E. Herzallah Mohamed, D. Baleanu, Computers Mathematics with Applications 64, 10 (2012)
  • [29] S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, Computers Mathematics with Applications 64, 10, (2012)
  • [30] A. Razminia, D. Baleanu, Proceeding of the Romanian Academy Series A-Mathematics Physics Technical Sciences 13, 4 (2012)
  • [31] I. Petrás, I. Podlubny, P. O’Leary, L. Dorcák, B.M. Vinagre, Analoge Realization of Fractional-Order Controllers, Tu Kosice: BERG, Faculty, Slovakia, (2002)
  • [32] I. Petrás, IEEE Transactions on Circuits and Systems-II: Express Briefs 57, 12 (2010) [WoS]
  • [33] I. Petrás, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer and Beijing: HEP, London, 2011) http://dx.doi.org/10.1007/978-3-642-18101-6[Crossref]
  • [34] A.A. Rousan et al., Fract. Calc. App. Anal. 9, 1 (2006)
  • [35] A. Obeidat, M. Gharibeh, M. Al-Ali, A. Rousan, Fract. Calc. App. Anal. 14, 2 (2011)
  • [36] J.F. Gómez-Aguilar, J.J. Rosales-García, J.J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Rev. Mex. Fís. 58, 348 (2012)
  • [37] Ya.E. Ryabov, A. Puzenko, Phys. Rev. B 66, 184201 (2002) http://dx.doi.org/10.1103/PhysRevB.66.184201[Crossref]
  • [38] A.A. Stanislavsky, Acta Physica Polonica B 37, 319 (2006)
  • [39] I. Podlubny, Fract. Calc. App. Anal. 5, 4 (2002)
  • [40] M. Moshre-Torbati, J.K. Hammond, J. Franklin Inst. 335B, 6 (1998)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0265-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.