PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 10 | 1440-1456
Tytuł artykułu

Finite difference scheme for the time-space fractional diffusion equations

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we derive two novel finite difference schemes for two types of time-space fractional diffusion equations by adopting weighted and shifted Grünwald operator, which is used to approximate the Riemann-Liouville fractional derivative to the second order accuracy. The stability and convergence of the schemes are analyzed via mathematical induction. Moreover, the illustrative numerical examples are carried out to verify the accuracy and effectiveness of the schemes.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
10
Strony
1440-1456
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
  • Department of Mathematics, Shanghai University, Shanghai, 200444, China
autor
  • Department of Mathematics, Shanghai University, Shanghai, 200444, China, lcp@shu.edu.cn
Bibliografia
  • [1] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)
  • [2] K.B. Oldham, J. Spanier, The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order (Academic Press, New York, 1974)
  • [3] R. Hilfer, J. Phys. Chem. B 104, 3914 (2000) http://dx.doi.org/10.1021/jp9936289[Crossref]
  • [4] W.R. Schneider, W. Wyss, J. Math. Phys. 30, 134 (1989) http://dx.doi.org/10.1063/1.528578[Crossref]
  • [5] F. Sntamaria, S. Wils, E. D. Schutter, G. J. Augustine, Neuron. 52, 635 (2008) http://dx.doi.org/10.1016/j.neuron.2006.10.025[Crossref]
  • [6] M. Saxton, Bioplys. 81, 2226 (2001)
  • [7] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [8] E.A. Abdel-Rehim, R. Gorenflo, J. Comput. Appl. 222, 274 (2008) http://dx.doi.org/10.1016/j.cam.2007.10.052[Crossref]
  • [9] D. Fulger, E. Scalas, G. Germano, Phys. Rev E. 77, 021122 (2008) http://dx.doi.org/10.1103/PhysRevE.77.021122[Crossref]
  • [10] F. Liu, Q. Liu, I. Turner, V. Anh, J. Comput. Phys. 222, 57 (2007) http://dx.doi.org/10.1016/j.jcp.2006.06.005[Crossref]
  • [11] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, Chem. Phys. 284, 521 (2002) http://dx.doi.org/10.1016/S0301-0104(02)00714-0[Crossref]
  • [12] M.M. Meerscharet, D.A. Benson, H.-P, B. Baeumer, Phys. Rev. E 65, 1103 (2002)
  • [13] W.Y. Tian, H. Zhou, W.H. Deng, arXiv:1201.5949v3[math.NA]
  • [14] T.A.M. Langlands, B.I. Henry, J. Comput. Phys. 205, 719 (2005) http://dx.doi.org/10.1016/j.jcp.2004.11.025[Crossref]
  • [15] Z.Z. Sun, X.N. Wu, Appl. Numer. Math. 56, 193 (2006) http://dx.doi.org/10.1016/j.apnum.2005.03.003[Crossref]
  • [16] S.B. Yuste, L. Acedo, SIAM J. Numer. Anal. 42, 1862 (2005) http://dx.doi.org/10.1137/030602666[Crossref]
  • [17] C. Chen, F. Liu, I. Turner, V. Anh, J. Comput. Phys. 227, 886 (2007) http://dx.doi.org/10.1016/j.jcp.2007.05.012[Crossref]
  • [18] C.P. Li, Z.G. Zhao, Y.Q. Chen, Comput. Math. Appl. 62, 855 (2011) http://dx.doi.org/10.1016/j.camwa.2011.02.045[Crossref]
  • [19] H.F. Ding, C.P. Li, J. Comput. Phys. 242, 103 (2013) http://dx.doi.org/10.1016/j.jcp.2013.02.014[Crossref]
  • [20] G.H. Gao, Z.Z. Sun, J. Comput. Phys. 230, 586 (2011) http://dx.doi.org/10.1016/j.jcp.2010.10.007[Crossref]
  • [21] M.M. Meerscharet, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004) http://dx.doi.org/10.1016/j.cam.2004.01.033[Crossref]
  • [22] Y.M. Lin, C.J. Xu, J. Comput. Phys. 225, 1533 (2007) http://dx.doi.org/10.1016/j.jcp.2007.02.001[Crossref]
  • [23] R.R. Nigmatullin, Theor. Math. Phys. 90, 242 (1992) http://dx.doi.org/10.1007/BF01036529[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0261-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.