PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 6 | 666-675
Tytuł artykułu

Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the one-dimensional time-fractional diffusion-wave equation with the Caputo fractional derivative of order α, 1 ≤ α ≤ 2 and with constant coefficients is revisited. It is known that the diffusion and the wave equations behave quite differently regarding their response to a localized disturbance. Whereas the diffusion equation describes a process where a disturbance spreads infinitely fast, the propagation speed of the disturbance is a constant for the wave equation. We show that the time-fractional diffusion-wave equation interpolates between these two different responses and investigate the behavior of its fundamental solution for the signalling problem in detail. In particular, the maximum location, the maximum value, and the propagation velocity of the maximum point of the fundamental solution for the signalling problem are described analytically and calculated numerically.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
6
Strony
666-675
Opis fizyczny
Daty
wydano
2013-06-01
online
2013-10-09
Twórcy
autor
  • Department of Mathematics, Physics, and Chemistry, Beuth Technical University of Applied Sciences, Luxemburger Str. 10, D-13353, Berlin, Germany, luchko@beuth-hochschule.de
Bibliografia
  • [1] E. Buckwar, Yu Luchko, J. Math. Anal. Appl. 227, 81 (1998) http://dx.doi.org/10.1006/jmaa.1998.6078[Crossref]
  • [2] Y. Fujita, Osaka J. Math. 27, 309, 797 (1990)
  • [3] Y. Fujita, Japan J. Appl. Math. 7, 459 (1990) http://dx.doi.org/10.1007/BF03167854[Crossref]
  • [4] R. Gorenflo, R. Rutman, On ultraslow and intermediate processes, in: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods and Special Functions, Sofia 1994 (Science Culture Technology Publ., Singapore, 1995) 61
  • [5] R. Gorenflo, Yu. Luchko, F. Mainardi, Fract. Calc. Appl. Anal. 2, 383 (1999).
  • [6] R. Gorenflo, Yu. Luchko, F. Mainardi, J. Comput. Appl. Math. 11, 175 (2000) http://dx.doi.org/10.1016/S0377-0427(00)00288-0[Crossref]
  • [7] R. Gorenflo, J. Loutchko, Yu. Luchko, Fract. Calc. Appl. Anal. 5, 491 (2002)
  • [8] A.A. Kilbas, M. Saigo, H-transforms. Theory and Applications (Chapman and Hall/CRC, Boca Raton, FL, 2004) http://dx.doi.org/10.1201/9780203487372[Crossref]
  • [9] A.N. Kochubei, Diff. Equat. 25, 967 (1989) [English translation from the Russian Journal Differentsial’nye Uravneniya]
  • [10] A.N. Kochubei, Diff. Equat. 26, 485 (1990) [English translation from the Russian Journal Differentsial’nye Uravneniya]
  • [11] A. Kreis, A.C. Pipkin, Quart. Appl. Math. 44, 353 (1986)
  • [12] Yu. Luchko, R. Gorenflo, Fract. Calc. Appl. Anal. 1, 63 (1998)
  • [13] Yu. Luchko, Fract. Calc. Appl. Anal. 11, 57 (2008)
  • [14] Yu. Luchko, J. Math. Anal. Appl. 351, 218 (2009) http://dx.doi.org/10.1016/j.jmaa.2008.10.018[Crossref]
  • [15] Yu. Luchko, Computers and Mathematics with Applications 59, 1766 (2010) http://dx.doi.org/10.1016/j.camwa.2009.08.015[Crossref]
  • [16] Yu. Luchko, J. Math. Anal. Appl. 374, 538 (2011) http://dx.doi.org/10.1016/j.jmaa.2010.08.048[Crossref]
  • [17] Yu. Luchko, Fract. Calc. Appl. Anal. 14, 110 (2011)
  • [18] Yu. Luchko, Fract. Calc. Appl. Anal. 15, 141 (2012)
  • [19] Yu. Luchko, J. Math. Phys. 54, 031505/1 (2013)
  • [20] Yu. Luchko, F. Mainardi, Yu. Povstenko, Comput. Math. Appl., in press (2013) DOI: 10.1016/j.camwa.2013.01.005 [Crossref]
  • [21] F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, in: S. Rionero and T. Ruggeri (Eds.), Waves and Stability in Continuous Media (World Scientific, Singapore, 1994) 246
  • [22] F. Mainardi, Chaos Solitons Fractals 7, 1461 (1996) http://dx.doi.org/10.1016/0960-0779(95)00125-5[Crossref]
  • [23] F. Mainardi, Appl. Math. Lett. 9, 23 (1996) http://dx.doi.org/10.1016/0893-9659(96)00089-4[Crossref]
  • [24] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. (Imperial College Press, London, 2010) http://dx.doi.org/10.1142/9781848163300[Crossref]
  • [25] F. Mainardi, Forum der Berliner Mathematischer Gesellschaft 19, 20 (2011)
  • [26] F. Mainardi, M. Tomirotti, On a special function arising in the time fractional diffusion-wave equation, in: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods and Special Functions, Sofia 1994 (Science Culture Technology, Singapore, 1995) 171
  • [27] F. Mainardi, M. Tomirotti, Ann. Geofis. 40, 1311 (1997)
  • [28] F. Mainardi, Yu. Luchko, G. Pagnini, Fract. Calc. Appl. Anal. 4, 153 (2001)
  • [29] F. Mainardi, G. Pagnini, R.K. Saxena J. Comp. Appl. Math. 178, 321 (2005) http://dx.doi.org/10.1016/j.cam.2004.08.006[Crossref]
  • [30] A.M. Mathai, H.J. Haubold, Special Functions for Applied Scientists (Springer Verlag, New York, 2008) http://dx.doi.org/10.1007/978-0-387-75894-7[Crossref]
  • [31] A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-function: Theory and Applications (Springer Verlag, New York, 2010) http://dx.doi.org/10.1007/978-1-4419-0916-9[Crossref]
  • [32] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)
  • [33] J. Prüss, Evolutionary Integral Equations and Applications (Birkhauser Verlag, Basel, 1993) http://dx.doi.org/10.1007/978-3-0348-8570-6[Crossref]
  • [34] R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions. Theory and Applications, (De Gruyter, Berlin, 2010)
  • [35] W.R. Schneider, W. Wyss, J. Math. Phys. 30, 134 (1989) http://dx.doi.org/10.1063/1.528578[Crossref]
  • [36] W. Wyss, J. Math. Phys. 27, 2782 (1986) http://dx.doi.org/10.1063/1.527251[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0247-8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.