PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 10 | 1423-1432
Tytuł artykułu

Existence of positive solutions for nonlocal boundary value problem of fractional differential equation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study a type of nonlinear fractional differential equations multi-point boundary value problem with fractional derivative in the boundary conditions. By using the upper and lower solutions method and fixed point theorems, some results for the existence of positive solutions for the boundary value problem are established. Some examples are also given to illustrate our results.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
10
Strony
1423-1432
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
autor
  • College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China, xipingliu@163.com
autor
  • College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
autor
  • College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
Bibliografia
  • [1] R. Hilfer, Applications of Fractional Calculus in Physics, (World Scientific, Singapore, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [2] D. Baleanu, J. A. T. Machado, A. Luo, Eds., New Trends in Nanotechnology and Fractional Calculus Applications, (Springer, 2010) http://dx.doi.org/10.1007/978-90-481-3293-5[Crossref]
  • [3] T. J. Machado, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. Numer. Simul. 16, 1140 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.05.027[Crossref]
  • [4] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, (World Scientific, 2012)
  • [5] I. Podlubny, Fractional Differential Equations, Mathematics in cience and Engineering, (New York: Academic Press, 1999)
  • [6] K. Diethelm, The Analysis of Fractional Differential Equation, (Spring-Verlag Heidelberg, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, (Elsevier Science B. V. Amsterdam, 2006)
  • [8] A. K. Golmankhaneh, A. K. Golmankhaneh, D. Baleanu, Rom. Rep. Phys., 63, 609 (2011)
  • [9] O.P. Agrawal, D. Baleanu, J. Vib. Control, 13, 1269 (2007) http://dx.doi.org/10.1177/1077546307077467[Crossref]
  • [10] X. Su, Comput. Math. Appl., 64, 3425 (2012) http://dx.doi.org/10.1016/j.camwa.2012.02.043[Crossref]
  • [11] J. Wang, Y. Zhou, W. Wei, H. Xu, Comput. Math. Appl., 62, 1427 (2011) http://dx.doi.org/10.1016/j.camwa.2011.02.040[Crossref]
  • [12] G. Mophou, O. Nakoulima, G. N’Guerekata, Nonlinear Stud. 17, 15 (2010)
  • [13] L. Lin, X. Liu, H. Fang, Electron. J. Diff. Equ. 100, 1 (2012)
  • [14] M. Jia, X. Liu, Comput. Math. Appl. 62, 1405 (2011) http://dx.doi.org/10.1016/j.camwa.2011.03.026[Crossref]
  • [15] X. Liu, M. Jia, B. Wu, Electron. J. Qual. Theo. 69, 1 (2009)
  • [16] Z. Bai, H. Lü, J. Math. Anal. Appl. 311, 495 (2005) http://dx.doi.org/10.1016/j.jmaa.2005.02.052[Crossref]
  • [17] X. Liu, M. Jia, Comput. Math. Appl. 59, 2880 (2010) http://dx.doi.org/10.1016/j.camwa.2010.02.005[Crossref]
  • [18] D. Jiang, C. Yuan, Nonlinear Anal. 72, 710 (2009) http://dx.doi.org/10.1016/j.na.2009.07.012[Crossref]
  • [19] S. Liang, J. Zhang, Nonlinear Anal. 71, 5545 (2009) http://dx.doi.org/10.1016/j.na.2009.04.045[Crossref]
  • [20] E. R. Kaufmann, E. Mboumi, Electron. J. Qual. Theo. 3, 1(2008)
  • [21] X. Xu, D. Jiang, C. Yuan, Nonlinear Anal. 71, 4676 (2010) http://dx.doi.org/10.1016/j.na.2009.03.030[Crossref]
  • [22] Y. Zhao, S. Sun, Z. Han, Q. Li, Commun. Nonlinear Sci. Numer. Simul. 16, 2086 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.08.017[Crossref]
  • [23] X. Zhao, C. Chai, W. Ge, Commun. Nonlinear Sci. Numer. Simul. 16, 3665 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.01.002[Crossref]
  • [24] C. F. Li, X. N. Luo, Y. Zhou, Comput. Math. Appl. 59, 1363 (2010) http://dx.doi.org/10.1016/j.camwa.2009.06.029[Crossref]
  • [25] Z. Bai, Nonlinear Anal. 72, 916 (2010) http://dx.doi.org/10.1016/j.na.2009.07.033[Crossref]
  • [26] J. Wang, Y. Zhou, W. Wei, Commun. Nonlinear Sci. Numer. Simulat. 16, 4049 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.02.003[Crossref]
  • [27] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, (Noordhoff, Groningen, 1964)
  • [28] R. Leggett, L. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. J. 28, 673 (1979) http://dx.doi.org/10.1512/iumj.1979.28.28046[Crossref]
  • [29] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, (Academic Press, San Diego, 1988)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0238-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.