PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 9 | 1082-1090
Tytuł artykułu

A rate equation method for the sequential double ionisation, including autoionising state excitation, of a noble gas

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A set of rate equations have been tested against a more robust set of Time-Dependent Density Matrix (TDDM) equations [D. P. W. Middleton, L. A. A. Nikolopoulos, J. Mod. Opti. 59, 1650 (2012)] by using them to determine the populations of ion species and autoionising states (AIS) in noble gas atoms when interacting with a strong external field. Two field shapes were tested here - sinusoidal and square - and a variety of pulse characteristics were examined, i.e. intensity, duration and photon energy, for the neon atomic system. It was found that the rate equations were sufficiently accurate only when the external field is way off-resonant with the AIS. Moreover, analytical solutions of the rate equations in the square pulse case agree with the numerical solutions for a time-dependent pulse containing many cycles. An attempt to model a stochastic field was also made and it was found that the use of such a field diminished and broadened the ion yield ratio due to the presence of an added bandwidth.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
9
Strony
1082-1090
Opis fizyczny
Daty
wydano
2013-09-01
online
2013-11-24
Bibliografia
  • [1] W. Ackermann et al., Nat. Photonics 1, 336 (2007) http://dx.doi.org/10.1038/nphoton.2007.76[Crossref]
  • [2] V. Richardson et al., J. Phys. B: At. Mol. Phys. 45, 085601 (2012) http://dx.doi.org/10.1088/0953-4075/45/8/085601[Crossref]
  • [3] L. Young et al., Nature (London) 466, 56 (2010) http://dx.doi.org/10.1038/nature09177[Crossref]
  • [4] L. A. A. Nikolopoulos, P. Lambropoulos, J. Phys. B: At. Mol. Phys. 40, 1347 (2007) http://dx.doi.org/10.1088/0953-4075/40/7/004[Crossref]
  • [5] M. Meyer et al., Phys. Rev. A 74, 011401 (2006) http://dx.doi.org/10.1103/PhysRevA.74.011401[Crossref]
  • [6] D. P. W. Middleton, L. A. A. Nikolopoulos, J. Mod. Opti. 59, 1650 (2012) http://dx.doi.org/10.1080/09500340.2012.737481[Crossref]
  • [7] L. A. A. Nikolopoulos, T. J. Kelly, J. T. Costello, Phys. Rev. A 84, 063419 (2011) http://dx.doi.org/10.1103/PhysRevA.84.063419[Crossref]
  • [8] B.-N. Dai, P. Lambropoulos, Phys. Rev. A 34, 3954 (1986) http://dx.doi.org/10.1103/PhysRevA.34.3954[Crossref]
  • [9] P. Lambropoulos, P. Zoller, Phys. Rev. A 24, 379 (1981) http://dx.doi.org/10.1103/PhysRevA.24.379[Crossref]
  • [10] K. Blum, Density matrix theory and its applications (Plenum Press, 1981) http://dx.doi.org/10.1007/978-1-4615-6808-7[Crossref]
  • [11] M. Martins, M. Wellhöfer, A. A. Sorokin, M. Richter, K. Tiedtke, W. Wurth, Phys. Rev. A 80, 023411 (2009) http://dx.doi.org/10.1103/PhysRevA.80.023411[Crossref]
  • [12] U. Fano, Phys. Rev. 124, 1866 (1961) http://dx.doi.org/10.1103/PhysRev.124.1866[Crossref]
  • [13] S. Stenholm, Foundations of Laser Spectroscopy (John Wiley and Sons, 1984)
  • [14] R. Bellman, R. S. Roth, Laplace Transforms (Singapore, World Scientific, 1984) http://dx.doi.org/10.1142/0107[Crossref]
  • [15] P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, M. D. Levenson, J. Phys. B: At. Mol. Phys. 11, 1733 (1978) http://dx.doi.org/10.1088/0022-3700/11/10/011[Crossref]
  • [16] A. M. Covington et al., Phys. Rev. A 66, 062710 (2002) http://dx.doi.org/10.1103/PhysRevA.66.062710[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0232-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.