PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 6 | 855-862
Tytuł artykułu

General formula for stability testing of linear systems with fractional-delay characteristic equation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In some applications (especially in the filed of control theory) the characteristic equation of system contains fractional powers of the Laplace variable s possibly in combination with exponentials of fractional powers of s. The aim of this paper is to propose an easy-to-use and effective formula for bounded-input boundedoutput (BIBO) stability testing of a linear time-invariant system with fractional-delay characteristic equation in the general form of $$\Delta \left( s \right) = P_0 \left( s \right) + \sum\nolimits_{i = 1}^N {P_i \left( s \right)\exp ( - \zeta _i s^{\beta _i } ) = 0}$$, where P i(s) (i = 0,...,N) are the so-called fractional-order polynomials and ξ i and β i are positive real constants. The proposed formula determines the number of the roots of such a characteristic equation in the right half-plane of the first Riemann sheet by applying Rouche’s theorem. Numerical simulations are also presented to confirm the efficiency of the proposed formula.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
6
Strony
855-862
Opis fizyczny
Daty
wydano
2013-06-01
online
2013-10-09
Twórcy
  • Faculty of Electrical Engineering, University of Zanjan, Zanjan, Iran, P.O.Box 313, f.bayat@znu.ac.ir
Bibliografia
  • [1] R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, New Jersey, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [2] R. L. Bagley, P. Torvik, J. Appl. Mech. 51, 294 (1984) http://dx.doi.org/10.1115/1.3167615[Crossref]
  • [3] V. G. Jenson, G. V. Jeffreys, Mathematical Methods in Chemical Engineering, 2nd edition (Academic Press, New York, 1977)
  • [4] N. Nakris, M. C. Constantinous, J. Struct. Eng. 117, 2708 (1991) http://dx.doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2708)[Crossref]
  • [5] G. Haneczok, M. Weller, Mat. Sci. Eng. A-Struct. 370, 209 (2004) http://dx.doi.org/10.1016/j.msea.2003.01.009[Crossref]
  • [6] I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)
  • [7] B. Onaral, H. H. Sun, H. P. Schwan, In: Proceedigs of the 10th Northeast Bioengineering Conference, Mar. 1982, Hanover, NH, 46
  • [8] D. W. Davidson, R. H. Cole, Chem. Phys. 18, 1414 (1950) http://dx.doi.org/10.1063/1.1747492[Crossref]
  • [9] R. J. Schwartz, B. Friedland, Linear Systems (McGraw-Hill, New York, 1965)
  • [10] R. F. Curtain, H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory (Springer, Berlin, 1995) http://dx.doi.org/10.1007/978-1-4612-4224-6[Crossref]
  • [11] H. Zwart, Syst. Control Lett. 52, 247 (2004) http://dx.doi.org/10.1016/j.sysconle.2004.02.002[Crossref]
  • [12] T. Helie, D. Matignon, Signal Process. 86, 2516 (2006) http://dx.doi.org/10.1016/j.sigpro.2006.02.017[Crossref]
  • [13] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos), (World Scientific, Singapore, 2012)
  • [14] K. Balachandran, J. Kokila, J. J. Trujillo, Comput. Math. Appl. 64, 3037 (2012) http://dx.doi.org/10.1016/j.camwa.2012.01.071[Crossref]
  • [15] S. Abbas, M. Benchohra, J. Nieto, Adv. Diff. Equ. 2011, 379876 (2011) http://dx.doi.org/10.1155/2011/379876[Crossref]
  • [16] A. Babakhani, D. Baleanu, Abstr. Appl. Anal. 2011, 391971 (2011) http://dx.doi.org/10.1155/2011/391971[Crossref]
  • [17] I. Podlubny, IEEE T. Automat. Contr. 44, 208 (1999) http://dx.doi.org/10.1109/9.739144[Crossref]
  • [18] F. Merrikh-Bayat, Can. J. Chem. Eng. 90, 1400 (2012) http://dx.doi.org/10.1002/cjce.21643[Crossref]
  • [19] C. Hwang, Y.-C. Cheng, Automatica 42, 825 (2006) http://dx.doi.org/10.1016/j.automatica.2006.01.008[Crossref]
  • [20] F. Jarad, T. Abdeljawad, D. Baleanu, Nonlinear Anal-Real 14, 780 (2013) http://dx.doi.org/10.1016/j.nonrwa.2012.08.001[Crossref]
  • [21] F. Jarad, T. Abdeljawad, D. Baleanu, K. Biçen, Abstr. Appl. Anal. 2012, 476581 (2012)
  • [22] H. Delavari, D. Baleanu, J. Sadati, Nonlinear Dynam. 67, 2433 (2012) http://dx.doi.org/10.1007/s11071-011-0157-5[Crossref]
  • [23] E. Kaslik, S. Sivasundaram, J. Comput. Appl. Math. 236, 4027 (2012) http://dx.doi.org/10.1016/j.cam.2012.03.010[Crossref]
  • [24] D. Matignon, ESAIM: Proceedings 5, 145 (1998) http://dx.doi.org/10.1051/proc:1998004[Crossref]
  • [25] M. Ikeda, S. Takahashi, Electron. Comm. Jpn. 160, 41 (1977)
  • [26] F. Merrikh-Bayat, M. Karimi-Ghartemani, ISA T. 48, 32 (2009) http://dx.doi.org/10.1016/j.isatra.2008.10.003[Crossref]
  • [27] F. Merrikh-Bayat, M. Karimi-Ghartemani, Math. Probl. Eng. 2008, DOI:10.1155/2008/419046 (2008) [Crossref]
  • [28] W. Gander, W. Gautschi, BIT 40, 84 (2000) http://dx.doi.org/10.1023/A:1022318402393[Crossref]
  • [29] L.F. Shampine, J. Comput. Appl. Math. 211, 131 (2008) http://dx.doi.org/10.1016/j.cam.2006.11.021[Crossref]
  • [30] J. Valsa, L. Brancik, Int. J. Numer. Model El. 11, 153 (1998) http://dx.doi.org/10.1002/(SICI)1099-1204(199805/06)11:3<153::AID-JNM299>3.0.CO;2-C[Crossref]
  • [31] N. Ozturk, A. Uraz, IEEE T. Automat. Contr. 29, 368 (1984) http://dx.doi.org/10.1109/TAC.1984.1103535[Crossref]
  • [32] N. Ozturk, A. Uraz, IEEE T. Circuits Syst. 32, 393 (1985) http://dx.doi.org/10.1109/TCS.1985.1085704[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0226-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.