PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 10 | 1470-1481
Tytuł artykułu

Numerical solution of fractional differential equations via a Volterra integral equation approach

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main focus of this paper is to present a numerical method for the solution of fractional differential equations. In this method, the properties of the Caputo derivative are used to reduce the given fractional differential equation into a Volterra integral equation. The entire domain is divided into several small domains, and by collocating the integral equation at two adjacent points a system of two algebraic equations in two unknowns is obtained. The method is applied to solve linear and nonlinear fractional differential equations. Also the error analysis is presented. Some examples are given and the numerical simulations are also provided to illustrate the effectiveness of the new method.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
10
Strony
1470-1481
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
  • Department of Applied Mathematics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran, sh.esmaeili@uok.ac.ir
  • Department of Applied Mathematics, Amirkabir University of Technology, No. 424 Hafez Avenue, Tehran, Iran, m_shamsi@aut.ac.ir
  • Department of Applied Mathematics, Amirkabir University of Technology, No. 424 Hafez Avenue, Tehran, Iran, mdehghan@aut.ac.ir
Bibliografia
  • [1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Yverdon, 1993)
  • [2] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010) http://dx.doi.org/10.1142/9781848163300[Crossref]
  • [3] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, CA, 1999)
  • [4] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)
  • [5] K. Diethelm, The Analysis of Fractional Differential Equations (Springer-Verlag, Berlin, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [6] R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific, Singapore, 2011) http://dx.doi.org/10.1142/8072[Crossref]
  • [7] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods (World Scientific, Singapore, 2012)
  • [8] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [9] K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Comput. Methods Appl. Mech. Engrg. 194, 743 (2005) http://dx.doi.org/10.1016/j.cma.2004.06.006[Crossref]
  • [10] Y. A. Rossikhin, M. V. Shitikova, Appl. Mech. Rev. 63, 010801 (2010) http://dx.doi.org/10.1115/1.4000563[Crossref]
  • [11] R. Magin, M. D. Ortigueira, I. Podlubny, J. J. Trujillo, Signal Process. 91, 350 (2011) http://dx.doi.org/10.1016/j.sigpro.2010.08.003[Crossref]
  • [12] D. Baleanu, A. K. Golmankhaneh, R. Nigmatullin, A. K. Golmankhaneh, Cent. Eur. J. Phys. 8, 120 (2010) http://dx.doi.org/10.2478/s11534-009-0085-x[Crossref]
  • [13] N. J. Ford, J. A. Connolly, Commun. Pure Appl. Anal. 5, 289 (2006) http://dx.doi.org/10.3934/cpaa.2006.5.289[Crossref]
  • [14] K. Diethelm, J. M. Ford, N. J. Ford, M. Weilbeer, J. Comput. Appl. Math. 186, 482 (2006) http://dx.doi.org/10.1016/j.cam.2005.03.023[Crossref]
  • [15] K. Diethelm, N. J. Ford, A. D. Freed, Numer. Algorithms 36, 31 (2004) http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be[Crossref]
  • [16] A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010) http://dx.doi.org/10.1016/j.camwa.2009.07.006[Crossref]
  • [17] R. Garrappa, M. Popolizio, J. Comput. Appl. Math. 235, 1085 (2011) http://dx.doi.org/10.1016/j.cam.2010.07.008[Crossref]
  • [18] S. Esmaeili, M. Shamsi, Y. Luchko, Comput. Math. Appl. 62, 918 (2011) http://dx.doi.org/10.1016/j.camwa.2011.04.023[Crossref]
  • [19] H. Jafari, H. Tajadodi, D. Baleanu, Fract. Calc. Appl. Anal. 16, 109 (2013)
  • [20] I. Podlubny, Fract. Calc. Appl. Anal. 3, 359 (2000)
  • [21] S. Esmaeili, M. Shamsi, Commun. Nonlinear Sci. 16, 3646 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.12.008[Crossref]
  • [22] G. Baumann, F. Stenger, Fract. Calc. Appl. Anal. 14, 568 (2011)
  • [23] A. K. Golmankhaneh, T. Khatuni, N. A. Porghoveh, D. Baleanu, Cent. Eur. J. Phys. 10, 966 (2012) http://dx.doi.org/10.2478/s11534-012-0038-7[Crossref]
  • [24] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, Appl. Math. Model. 36, 4931 (2012) http://dx.doi.org/10.1016/j.apm.2011.12.031[Crossref]
  • [25] M. Lakestani, M. Dehghan, S. Irandoust, Commun. Nonlinear Sci. 17, 1149 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.07.018[Crossref]
  • [26] C. Li, F. Zheng, F. Liu, Fract. Calc. Appl. Anal. 15, 383 (2012)
  • [27] J. Cao, C. Xu, J. Comput. Phys. 238, 154 (2013) http://dx.doi.org/10.1016/j.jcp.2012.12.013[Crossref]
  • [28] P. Linz, Analytical and Numerical Methods for Volterra Integral Equations (SIAM, Philadelphia, 1985) http://dx.doi.org/10.1137/1.9781611970852[Crossref]
  • [29] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations (Cambridge University Press, Cambridge, 2004) http://dx.doi.org/10.1017/CBO9780511543234[Crossref]
  • [30] P. Kumar, O. P. Agrawal, Signal Process. 86, 2602 (2006) http://dx.doi.org/10.1016/j.sigpro.2006.02.007[Crossref]
  • [31] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1970)
  • [32] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010)
  • [33] H. Engels, Numerical Quadrature and Cubature (Academic Press, London, 1980)
  • [34] R. Garrappa, M. Popolizio, Comput. Math. Appl. 62, 876 (2011) http://dx.doi.org/10.1016/j.camwa.2011.04.054[Crossref]
  • [35] R. Gorenflo, J. Loutchko, Y. Luchko, Fract. Calc. Appl. Anal. 5, 491 (2002)
  • [36] J. Huang, Y. Tang, L. Vázquez, Numer. Math. Theor. Meth. Appl. 5, 229 (2012) http://dx.doi.org/10.4208/nmtma.2012.m1038[Crossref]
  • [37] G. M. Zaslavsky, A. A. Stanislavsky, M. Edelman, Chaos 16, 013102 (2006) http://dx.doi.org/10.1063/1.2126806[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0212-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.