Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we derive the coefficient set {H m(x,y)}m=1∞ using the generating function ext+yϕ(t). When the complex function ϕ(t) is entire, using the inverse Mellin transform, and when ϕ(t) has singular points, using the inverse Laplace transform, the coefficient set is obtained. Also, bi-orthogonality of this set with its associated functions and its applications in the explicit solutions of partial fractional differential equations is discussed.
Czasopismo
Rocznik
Tom
Numer
Strony
1457-1462
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
autor
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran, alireza_1038@yahoo.com
autor
- Faculty of Mathematical Sciences, Islamic Azad University, Lahijan Branch, P.O. Box 1616, Lahijan, Iran, ah_refahi@yahoo.com
autor
- Faculty of Mathematical Sciences, Islamic Azad University, Lahijan Branch, P.O. Box 1616, Lahijan, Iran, krostami@guilan.ac.ir
Bibliografia
- [1] G. Dattoli, H.M. Srivastava, K. Zhukovsky, Appl. Math. Comput. 184, 979 (2007) http://dx.doi.org/10.1016/j.amc.2006.07.001[Crossref]
- [2] G. Dattoli, P.E. Ricci, I. Khomasuridze, Int. Transf. Special Funct. 15, 309 (2004) http://dx.doi.org/10.1080/10652460410001673013[Crossref]
- [3] G. Dattoli, P. E. Ricci, C. Cesarano, Appl. Anal.: Inter. J. 80, 379 (2001) http://dx.doi.org/10.1080/00036810108840999[Crossref]
- [4] H.M. Srivastava, H.L. Manocha, A Treatise On Generating Functions (Wiley, NewYork, 1984)
- [5] H.W. Gould, A.T. Hopper, Duke Math. J. 29, 51 (1962) http://dx.doi.org/10.1215/S0012-7094-62-02907-1[Crossref]
- [6] G. Dattoli, A. Arena, Math. Comput. Model. 40, 877 (2004) http://dx.doi.org/10.1016/j.mcm.2004.10.017[Crossref]
- [7] A. Aghili, A. Ansari, Anal. Appl. 9, 1 (2011) http://dx.doi.org/10.1142/S0219530511001765[Crossref]
- [8] G. Dattoli, P.L. Ottaviani, A. Torte, L. Vazquez, Riv. Nuovo Cimento 20, 1 (1997)
- [9] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)
- [10] G.H. Hardy, Ramanujan: Twelve Lectures On Subjects Suggested By His Life And Work (Cambridge University Press, Cambridge, 1940)
- [11] A.M. Wazwaz, Appl. Math. Comput. 169, 321 (2005) http://dx.doi.org/10.1016/j.amc.2004.09.054[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0195-3