PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 10 | 1487-1493
Tytuł artykułu

Existence of solutions for sequential fractional differential equations with four-point nonlocal fractional integral boundary conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the existence of solutions for a nonlinear boundary value problem of sequential fractional differential equations with four-point nonlocal Riemann-Liouville type fractional integral boundary conditions. We apply Banach’s contraction principle and Krasnoselskii’s fixed point theorem to establish the existence of results. Some illustrative examples are also presented.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
10
Strony
1487-1493
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
autor
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia, bashirahmad_qau@yahoo.com
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia, aalsaedi@hotmail.com
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia, hanno.1407@hotmail.com
Bibliografia
  • [1] R. P. Agarwal, B. Ahmad, Comput. Math. Appl. 62, 1200 (2011) http://dx.doi.org/10.1016/j.camwa.2011.03.001[Crossref]
  • [2] A. Aghajani, Y. Jalilian, J. J. Trujillo, Fractional Calculus and Applied Analysis 15, 44 (2012) http://dx.doi.org/10.2478/s13540-012-0005-4[Crossref]
  • [3] B. Ahmad, J. J. Nieto, Bound. Value Probl. 1, 36 (2011) http://dx.doi.org/10.1186/1687-2770-2011-36[Crossref]
  • [4] B. Ahmad, S. K. Ntouyas, Electron. J. Qual. Theo. 22, 1 (2011)
  • [5] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, Nonlinear Anal.-Real 13, 599 (2012) http://dx.doi.org/10.1016/j.nonrwa.2011.07.052[Crossref]
  • [6] B. Ahmad, J. J. Nieto, Comput. Math. Appl. 64, 3046 (2012) http://dx.doi.org/10.1016/j.camwa.2012.02.036[Crossref]
  • [7] F. T. Akyildiz, H. Bellout, K. Vajravelu, R. A. Van Gorder, Nonlinear Anal.-Real 12, 2919 (2011) http://dx.doi.org/10.1016/j.nonrwa.2011.02.017[Crossref]
  • [8] S. Bhalekar et al., Comput. Math. Appl. 61, 1355 (2011) http://dx.doi.org/10.1016/j.camwa.2010.12.079[Crossref]
  • [9] D. Baleanu, O. G. Mustafa, Comp. Math. Appl. 59, 1835 (2010) http://dx.doi.org/10.1016/j.camwa.2009.08.028[Crossref]
  • [10] D. Baleanu, O. G. Mustafa, R. P. Agarwal, Appl. Math. Comput. 218, 2074 (2011) http://dx.doi.org/10.1016/j.amc.2011.07.024[Crossref]
  • [11] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods. Series on Complexity, Nonlinearity and Chaos (World Scientific, Boston, 2012)
  • [12] H. Delavari, D. M. Senejohnny, D. Baleanu, Cent. Eur. J. Phys. 10, 1095 (2012) http://dx.doi.org/10.2478/s11534-012-0073-4[Crossref]
  • [13] N. J. Ford, M. Luisa Morgado, Fractional Calculus and Applied Analysis 14, 554 (2011) http://dx.doi.org/10.2478/s13540-011-0034-4[Crossref]
  • [14] A. K. Golmankhaneh, T. Khatuni, N. A. Porghoveh, D. Baleanu, Cent. Eur. J. Phys. 10, 966 (2012) http://dx.doi.org/10.2478/s11534-012-0038-7[Crossref]
  • [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204 (Elsevier Science B.V., Amsterdam, 2006)
  • [16] M. Klimek, Commun. Nonlinear Sci. 16, 4689 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.01.018[Crossref]
  • [17] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems (Cambridge Academic Publishers, Cambridge, 2009)
  • [18] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)
  • [19] J. Sabatier, O. P. Agrawal, J. A. T. Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, Dordrecht, 2007)
  • [20] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, Yverdon, 1993)
  • [21] D. R. Smart, Fixed Point Theorems (Cambridge University Press, Cambridge, 1980)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0193-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.