PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 3 | 296-316
Tytuł artykułu

On the geometry of the space-time and motion of the spinning bodies

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an alternative theory about space-time is given. First some preliminaries about 3-dimensional time and the reasons for its introduction are presented. Alongside the 3-dimensional space (S) the 3-dimensional space of spatial rotations (SR) is considered independently from the 3-dimensional space. Then it is given a model of the universe, based on the Lie groups of real and complex orthogonal 3 × 3 matrices in this 3+3+3-dimensional space. Special attention is dedicated for introduction and study of the space S × SR, which appears to be isomorphic to SO(3,ℝ) × SO(3,ℝ) or S 3 × S 3. The influence of the gravitational acceleration to the spinning bodies is considered. Some important applications of these results about spinning bodies are given, which naturally lead to violation of Newton’s third law in its classical formulation. The precession of the spinning axis is also considered.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
3
Strony
296-316
Opis fizyczny
Daty
wydano
2013-03-01
online
2013-03-28
Twórcy
  • Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, P.O.Box 162, Skopje, Macedonia, kostatre@pmf.ukim.mk
Bibliografia
  • [1] C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, New York, 1993) http://dx.doi.org/10.1017/CBO9780511564246[Crossref]
  • [2] K. Trencevski, E. G. Celakoska, Cent. Eur. J. Phys. 9, 654 (2011) http://dx.doi.org/10.2478/s11534-010-0102-0[Crossref]
  • [3] C. W. F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011) http://dx.doi.org/10.1103/PhysRevLett.106.221101[Crossref]
  • [4] K. Trencevski, E. G. Celakoska, V. Balan, Int. J. Theor. Phys. 50, 1 (2011) http://dx.doi.org/10.1007/s10773-010-0488-x[Crossref]
  • [5] K. Trencevski, Tensor 53, 70 (1993)
  • [6] K. Trencevski, Tensor 72, 32 (2010)
  • [7] K. Trencevski, Kragujevac Journal of Mathematics 35, 327 (2011)
  • [8] K. Trencevski, Mathematica Balkanica 25, 193 (2011)
  • [9] A. P. Yefremov, Acta Phys. Hung. N.S.-H. 11, 147 (2000)
  • [10] D. G. Pavlov, In: D. G. Pavlov, G. Atanasiu, V. Balan (Eds.), Space-Time Structure. Algebra and Geometry (Russian Hypercomplex Society, Moscow, 2007) 32
  • [11] V. S. Barashenkov, Turkish Journal of Physics 23, 831 (1999)
  • [12] V. S. Barashenkov, Particles and Nuclei 2, 54 (2004)
  • [13] V. S. Barashenkov, M. Z. Yuriev, Particles and Nuclei 6, 388 (2002)
  • [14] E. A. B. Cole, J. Phys. A-Math. Gen. 13, 109 (1980) http://dx.doi.org/10.1088/0305-4470/13/1/012[Crossref]
  • [15] A. J. R. Franco, Electronic Journal of Theoretical Physics 9, 35 (2006)
  • [16] H. Kitada, Nuovo Ciment. B 109, 281 (1994) http://dx.doi.org/10.1007/BF02727290[Crossref]
  • [17] J. Strnad, J. Phys. A-Math. Gen. 14, 433 (1981) http://dx.doi.org/10.1088/0305-4470/14/11/003[Crossref]
  • [18] J. Strnad, Phys. Lett. A 96, 371 (1983) http://dx.doi.org/10.1016/0375-9601(83)90339-0[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0167-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.