PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 2 | 173-181
Tytuł artykułu

Two-dimensional motion of a parabolically confined charged particle in a perpendicular magnetic field

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The classical two-dimensional motion of a parabolically confined charged particle in presence of a perpendicular magnetic is studied. The resulting equations of motion are solved exactly by using a mathematical method which is based on the introduction of complex variables. The two-dimensional motion of a parabolically charged particle in a perpendicular magnetic field is strikingly different from either the two-dimensional cyclotron motion, or the oscillator motion. It is found that the trajectory of a parabolically confined charged particle in a perpendicular magnetic field is closed only for particular values of cyclotron and parabolic confining frequencies that satisfy a given commensurability condition. In these cases, the closed paths of the particle resemble Lissajous figures, though significant differences with them do exist. When such commensurability condition is not satisfied, path of particle is open and motion is no longer periodic. In this case, after a sufficiently long time has elapsed, the open paths of the particle fill a whole annulus, a region lying between two concentric circles of different radii.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
2
Strony
173-181
Opis fizyczny
Daty
wydano
2013-02-01
online
2013-02-09
Twórcy
autor
  • Department of Physics, Prairie View A&M University, Prairie View, Texas, 77446, USA, ogciftja@pvamu.edu
Bibliografia
  • [1] G. R. Fowles, G. L. Cassiday, Analytical mechanics, Sixth Edition (Brooks/Cole, Belmont, 1999)
  • [2] L. Jacak, P. Hawrylak, A. Wojs, Quantum dots (Springer, Berlin, 1997)
  • [3] R. C. Ashoori, Nature 379, 413 (1996) http://dx.doi.org/10.1038/379413a0[Crossref]
  • [4] L. P. Kouwenhoven, C. M. Marcus, Phys. World 11, 35 (1998)
  • [5] M. A. Kastner, Phys. Today 46, 24 (1993) http://dx.doi.org/10.1063/1.881393[Crossref]
  • [6] V. Fock, Z. Phys. 47, 446 (1928). http://dx.doi.org/10.1007/BF01390750[Crossref]
  • [7] C. G. Darwin, Math. Proc. Cambridge 27, 86 (1930) http://dx.doi.org/10.1017/S0305004100009373[Crossref]
  • [8] O. Ciftja, M. G. Faruk, Phys. Rev. B 72, 205334 (2005) http://dx.doi.org/10.1103/PhysRevB.72.205334[Crossref]
  • [9] O. Ciftja, J. Phys.-Condens. Mat. 19, 046220 (2007) http://dx.doi.org/10.1088/0953-8984/19/4/046220[Crossref]
  • [10] S. T. Thornton, J. B. Marion, Classical dynamics of particles and systems, Fifth Edition (Brooks/Cole, Belmont, 2004).
  • [11] H. Goldstein, C. Poole, J. Safko, Classical mechanics, Third Edition (Addison Wesley, San Francisco, 2001).
  • [12] J. Lissajous, Ann. Chim. Phys. 51, 147 (1857)
  • [13] A. P. French, Vibrations and Waves (Norton, New York, 1971) 29
  • [14] J. D. Lawrence, A catalog of special plane curves (Dover, New York, 1972) 178
  • [15] J. D. Lawrence, A catalog of special plane curves (Dover, New York, 1972) 181
  • [16] E. F. Fahy, F. G. Karioris, Am. J. Phys. 20, 121 (1952) http://dx.doi.org/10.1119/1.1933142[Crossref]
  • [17] T. B. Greenslade Jr, Phys. Teach. 32, 364 (1993) http://dx.doi.org/10.1119/1.2343802[Crossref]
  • [18] J. R. Taylor, Classical Mechanics (University Science Books, Mill Valley, 2005) 65
  • [19] H. R. Lewis Jr, Phys. Rev. 172, 1313 (1968) http://dx.doi.org/10.1103/PhysRev.172.1313[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0165-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.