PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 1 | 37-48
Tytuł artykułu

Exact and approximate solutions of Schrödinger’s equation for a class of trigonometric potentials

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The asymptotic iteration method is used to find exact and approximate solutions of Schrödinger’s equation for a number of one-dimensional trigonometric potentials (sine-squared, double-cosine, tangent-squared, and complex cotangent). Analytic and approximate solutions are obtained by first using a coordinate transformation to reduce the Schrödinger equation to a second-order differential equation with an appropriate form. The asymptotic iteration method is also employed indirectly to obtain the terms in perturbation expansions, both for the energies and for the corresponding eigenfunctions.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
1
Strony
37-48
Opis fizyczny
Daty
wydano
2013-01-01
online
2013-01-15
Twórcy
autor
  • Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, Teknikokullar-Ankara, 06500, Turkey, hciftci@gazi.edu.tr
autor
  • Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montréal, Québec, H3G 1M8, Canada, richard.hall@concordia.ca
autor
  • Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, C1A 4P3, Canada, nsaad@upei.ca
Bibliografia
  • [1] T. Bakarat, J. Phys. A-Math. Gen. 39, 823 (2006) http://dx.doi.org/10.1088/0305-4470/39/4/007[Crossref]
  • [2] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A-Math. Gen. 36, 11807 (2003) http://dx.doi.org/10.1088/0305-4470/36/47/008[Crossref]
  • [3] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A-Math. Gen. 38, 1147 (2005) http://dx.doi.org/10.1088/0305-4470/38/5/015[Crossref]
  • [4] B. Champion, R.L. Hall, N. Saad, Int. J. Mod. Phys. A 23, 1405 (2008) http://dx.doi.org/10.1142/S0217751X08039852[Crossref]
  • [5] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A-Math. Gen. 39, 2338 (2005)
  • [6] H. Ciftci, R.L. Hall, N. Saad, Phys. Lett. A 340, 388 (2005) http://dx.doi.org/10.1016/j.physleta.2005.04.030[Crossref]
  • [7] H. Ciftci, R.L. Hall, N. Saad, Phys. Rev. A 72, 022101 (2005)
  • [8] C.B. Compean, M. Kirchbach, J. Phys. A-Math. Gen. 39, 547 (2006) http://dx.doi.org/10.1088/0305-4470/39/3/007[Crossref]
  • [9] F. Gori, L. de la Torre, Eur. J. Phys. 24, 15 (2003) http://dx.doi.org/10.1088/0143-0807/24/1/301[Crossref]
  • [10] K. Hai, W. Hai, Q. Chen, Phys. Lett. A 367, 445 (2007) http://dx.doi.org/10.1016/j.physleta.2007.03.042[Crossref]
  • [11] M.M. Nieto, L.M. Simmons, Phys. Rev. D 20, 1332 (1979) http://dx.doi.org/10.1103/PhysRevD.20.1332[Crossref]
  • [12] M.G. Marmorino, J. Math. Chem. 32, 303 (2002) http://dx.doi.org/10.1023/A:1022183225087[Crossref]
  • [13] N.W. McLachlan, Theory and application of Mathieu functions (Dover, New York, 1964)
  • [14] N. Saad, R.L. Hall, H. Ciftci, J. Phys. A-Math. Gen. 39, 13445 (2006) http://dx.doi.org/10.1088/0305-4470/39/43/004[Crossref]
  • [15] H. Taseli, J. Math. Chem. 34, 243 (2003) http://dx.doi.org/10.1023/B:JOMC.0000004073.17023.41[Crossref]
  • [16] Zhong-Qi Ma, A. Gonzalez-Cisneros, Bo-Wei Xu, Shi-Hai Dong, Phys. Lett. A 371, 180 (2007) http://dx.doi.org/10.1016/j.physleta.2007.06.021[Crossref]
  • [17] G.E. Andrews, R. Askey, R. Roy, Special Functions Encyclopedia of Mathematics and its Applications (Cambridge University Press, 2001)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0147-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.