PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 10 | 1233-1237
Tytuł artykułu

Linear discrete systems with memory: a generalization of the Langmuir model

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this manuscript we analyzed a general solution of the linear nonlocal Langmuir model within time scale calculus. Several generalizations of the Langmuir model are presented together with their exact corresponding solutions. The physical meaning of the proposed models are investigated and their corresponding geometries are reported.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
10
Strony
1233-1237
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
  • Institute of Physics, Department of Theoretical Physics, Kazan (Volga region) Federal University, Kremlevskaia str. 18, 420008, Kazan, Tatarstan, Russia
Bibliografia
  • [1] I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916) http://dx.doi.org/10.1021/ja02268a002[Crossref]
  • [2] J. Kankare, I. A. Vinokurov, Langmuir 15, 5591 (1999) http://dx.doi.org/10.1021/la981642r[Crossref]
  • [3] A. Kapoor, J. A. Ritter, R. T. Yang, Langmuir 6, 660 (1990) http://dx.doi.org/10.1021/la00093a022[Crossref]
  • [4] G. Sauerbrey, Zeitsch. Phys. 155, 206 (1959) http://dx.doi.org/10.1007/BF01337937[Crossref]
  • [5] D. S. G. Karpovich, J. Blanchard, Langmuir 10, 3315 (1994) http://dx.doi.org/10.1021/la00021a066[Crossref]
  • [6] S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic Press, 1967)
  • [7] Y. L. Sun et al., Talanta 73, 857 (2007) http://dx.doi.org/10.1016/j.talanta.2007.05.002[Crossref]
  • [8] P. G. Su, Y. P. Chang, Sens. Actuators B 125, 915 (2008) http://dx.doi.org/10.1016/j.snb.2007.10.006[Crossref]
  • [9] M.C. Baleanu, R. R. Nigmatullin, S. Okur, K. Ocakoglu, Commun. Nonlinear Sci. 16, 4643 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.02.030[Crossref]
  • [10] A. Erol, S. Okur, B. Comba, O. Mermer, M. C. Arikan, Sens. Actuators B 145, 174 (2010) http://dx.doi.org/10.1016/j.snb.2009.11.051[Crossref]
  • [11] A. A. Kilbas, H. H. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam 2006)
  • [12] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives - Theory and Applications (Gordon and Breach, Linghorne, P.A. 1993)
  • [13] R. L. Magin, Fractional Calculus in Bioengineering (Begell House Publisher, Inc. Connecticut 2006)
  • [14] B. J. West, M. Bologna, P. Grigolini, Physics of Fractal operators (Springer, New York 2003) http://dx.doi.org/10.1007/978-0-387-21746-8[Crossref]
  • [15] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos, World Scientific 2012)
  • [16] J. A. T. Machado, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. 16, 1140 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.05.027[Crossref]
  • [17] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications (Birkhäuser, Boston, Mass, USA, 2001) http://dx.doi.org/10.1007/978-1-4612-0201-1[Crossref]
  • [18] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego CA 1999)
  • [19] R. Bellman, Introduction to Matrix Analysis (Philadelphia: Society for Industrial and Applied Mathematics, 1997) http://dx.doi.org/10.1137/1.9781611971170[Crossref]
  • [20] R. R. Nigmatullin, D. Baleanu, Int. J. Theor. Phys. 49, 701 (2010) http://dx.doi.org/10.1007/s10773-010-0249-x[Crossref]
  • [21] S. Hilger, Results in Mathematics 18, 18 (1990) http://dx.doi.org/10.1007/BF03323153[Crossref]
  • [22] G. Sh. Guseinov, J. Math. Anal. Appl. 285, 107 (2003) http://dx.doi.org/10.1016/S0022-247X(03)00361-5[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0129-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.