PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 1 | 89-95
Tytuł artykułu

Function projective synchronization of two four-scroll hyperchaotic systems with unknown parameters

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Function projective synchronization (FPS) of two novel hyperchaotic systems with four-scroll attractors which have been found up to the present is investigated. Adaptive control is employed in the situation that system parameters are unknown. Based on Lyapunov stability theory, an adaptive controller and a parameter update law are designed so that the two systems can be synchronized asymptotically by FPS. Numerical simulation is provided to show the effectiveness of the proposed adaptive controller and the parameter update law.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
1
Strony
89-95
Opis fizyczny
Daty
wydano
2013-01-01
online
2013-01-15
Twórcy
autor
  • Institute of Applied Sciences, Shanghai Dianji University, No.1350, Ganlan Road, Lingang New City, Pudong New District, Shanghai, 201306, China, sunzw@sdju.edu.cn
Bibliografia
  • [1] Z. X. Wang, K. Shen, Cent. Eur. J. Phys. 6, 402 (2008) http://dx.doi.org/10.2478/s11534-008-0063-8[Crossref]
  • [2] H. Merta, Chaos Solitons Fract. 27, 279 (2006) http://dx.doi.org/10.1016/j.chaos.2005.03.028[Crossref]
  • [3] S. Gakkhar, R. K. Naji, Commun. Nonlinear Sci. Numer. Simul. 10, 105 (2005) http://dx.doi.org/10.1016/S1007-5704(03)00120-5[Crossref]
  • [4] H. J. Chen, M. C. Li, J. Econ. Behav. Organ. 65, 245 (2008) http://dx.doi.org/10.1016/j.jebo.2005.09.005[Crossref]
  • [5] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963) http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2[Crossref]
  • [6] G. R. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999) http://dx.doi.org/10.1142/S0218127499001024[Crossref]
  • [7] G. Y. Wang et al., Chin. Phys. 15, 2872 (2006) http://dx.doi.org/10.1088/1009-1963/15/12/018[Crossref]
  • [8] C. Liu, L. Liu, T. Liu, Chaos Solitons Fract. 39, 1950 (2009) http://dx.doi.org/10.1016/j.chaos.2007.06.079[Crossref]
  • [9] S. Dadras, H. R. Momeni, Phys. Lett. A 373, 3637 (2009) http://dx.doi.org/10.1016/j.physleta.2009.07.088[Crossref]
  • [10] L. Wang, Nonlinear Dyn. 56, 453 (2009) http://dx.doi.org/10.1007/s11071-008-9417-4[Crossref]
  • [11] G. Qi, G. Chen, Y. Zhang, Phys. Lett. A 352, 386 (2006) http://dx.doi.org/10.1016/j.physleta.2005.12.030[Crossref]
  • [12] G. Qi, B. J. Wyk, M. A. Wyk, Chaos Solitons Fract. 40, 2016 (2009) http://dx.doi.org/10.1016/j.chaos.2007.09.095[Crossref]
  • [13] Q. Jia, Phys. Lett. A 371, 410 (2007) http://dx.doi.org/10.1016/j.physleta.2007.06.038[Crossref]
  • [14] G. M. Mahmoud, E. E. Mahmoud, M. E. Ahmed, Nonlinear Dyn. 58, 725 (2009) http://dx.doi.org/10.1007/s11071-009-9513-0[Crossref]
  • [15] Y. J. Niu, X. Y. Wang, M. J. Wang, H. G. Zhang, Commun. Nonlinear Sci. Numer. Simulat. 15, 3518 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.08.014[Crossref]
  • [16] S. Dadras, H. R. Momeni, Phys. Lett. A 374, 1368 (2010) http://dx.doi.org/10.1016/j.physleta.2010.01.030[Crossref]
  • [17] S. Cang, G. Qi, Z. Chen, Nonlinear Dyn. 59, 515 (2010) http://dx.doi.org/10.1007/s11071-009-9558-0[Crossref]
  • [18] J. P. Goedgebuer, L. Larger, H. Port, Phys. Rev. Lett. 80, 2249 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.2249[Crossref]
  • [19] A. Kiani, K. Fallahi, N. Pariz, H. Leung, Commun. Nonlinear Sci. Numer. Simulat. 14, 863 (2009) http://dx.doi.org/10.1016/j.cnsns.2007.11.011[Crossref]
  • [20] X. J. Wu, H. Wang, H. T. Lu, Nonlinear Anal. 12, 1288 (2011) http://dx.doi.org/10.1016/j.nonrwa.2010.09.026[Crossref]
  • [21] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.821[Crossref]
  • [22] J. A. Laoye, U. E. Vincent, S. O. Kareem, Chaos Solitons Fract. 39, 356 (2009) http://dx.doi.org/10.1016/j.chaos.2007.04.020[Crossref]
  • [23] A. L. Ricardo, M. G. Rafael, Chaos Solitons Fract. 38, 531 (2008) http://dx.doi.org/10.1016/j.chaos.2006.11.038[Crossref]
  • [24] J. M. Nazzal, A. N. Natsheh, Chaos Solitons Fract. 33, 695 (2007) http://dx.doi.org/10.1016/j.chaos.2006.01.071[Crossref]
  • [25] Y. Tang, J. Fang, Commun. Nonlinear Sci. Numer. Simulat. 14, 3615 (2009) http://dx.doi.org/10.1016/j.cnsns.2009.02.006[Crossref]
  • [26] G. Santoboni, A. Y. Pogromsky, H. Nijmeijer, Phys. Lett. A 291, 265 (2001) http://dx.doi.org/10.1016/S0375-9601(01)00652-1[Crossref]
  • [27] Y. Chen, X. Chen, S. Gu, Nonlinear Anal. 9, 1929 (2007) http://dx.doi.org/10.1016/j.na.2006.02.033[Crossref]
  • [28] R. Mainieri, J. Rehacek, Phys. Rev. Lett. 82, 3042 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.3042[Crossref]
  • [29] C. Y. Chee, D. Xu, Chaos Solitons Fract. 23, 1063 (2005)
  • [30] G. Alvarez, S. J. Li, F. Montoya, G. Pastor, M. Romera, Chaos Solitons Fract. 24, 775 (2005) http://dx.doi.org/10.1016/j.chaos.2004.09.038[Crossref]
  • [31] G. H. Li, Chaos Solitons Fract. 32, 1786 (2007) http://dx.doi.org/10.1016/j.chaos.2005.12.009[Crossref]
  • [32] R. Z. Luo, Phys. Lett. A 372, 3667 (2008) http://dx.doi.org/10.1016/j.physleta.2008.02.035[Crossref]
  • [33] T. H. Lee, J. H. Park, Chin. Phys. Lett. 26, 090507 (2009) http://dx.doi.org/10.1088/0256-307X/26/9/090507[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0117-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.