PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 10 | 5 | 1221-1227
Tytuł artykułu

Duality on the quantum space(3) with two parameters

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we introduce a dual Hopf algebra in the sense of Sudbery for the quantum space(3) whose coordinates satisfy the commutation relations with two parameters and we show that the dual algebra is isomorphic to the quantum Lie algebra corresponding to the Cartan-Maurer right invariant differential forms on the quantum space(3). We also observe that the quantum Lie algebra generators are commutative as those of the undeformed Lie algebra and the deformation becomes apparent when one studies the Leibniz rules for the generators.
Wydawca

Czasopismo
Rocznik
Tom
10
Numer
5
Strony
1221-1227
Opis fizyczny
Daty
wydano
2012-10-01
online
2012-11-21
Twórcy
  • Department of Mathematics, Yildiz Technical University, Campus of Davutpasa, 34210, Istanbul, Turkey, mozavsar@yildiz.edu.tr
  • Department of Mathematics, Yildiz Technical University, Campus of Davutpasa, 34210, Istanbul, Turkey, gyesilot@yildiz.edu.tr
Bibliografia
  • [1] V. G. Drinfeld, In: A. M. Gleason (Ed.), Proceedings International Congress of Mathematicians, 03–11 August 1986, Berkeley, California, USA (Amer. Math.Soc., 1988) 798
  • [2] M. Jimbo, Lett. Math. Phys. 11, 247 (1986) http://dx.doi.org/10.1007/BF00400222[Crossref]
  • [3] L. A. Takhtajan, Adv. Stud. Pure Math. 19, 435 (1989)
  • [4] Y. I. Manin, Quantum Groups and Noncommutative Geometry (Centre de Reserches Mathematiques, Montreal, 1988)
  • [5] Y. I. Manin, Commun. Math. Phys. 123, 163 (1989) http://dx.doi.org/10.1007/BF01244022[Crossref]
  • [6] S. L. Woronowicz, Commun. Math. Phys. 111, 613 (1987) http://dx.doi.org/10.1007/BF01219077[Crossref]
  • [7] L. Faddeev, N. Reshetikin, L. Takhtajan, Alg. Anal. 1, 129 (1988)
  • [8] L. Alvarez-Gaume, C. Gomez, G. Sierra, Nucl. Phys. B 330, 347 (1990) http://dx.doi.org/10.1016/0550-3213(90)90116-U[Crossref]
  • [9] L. Alvarez-Gaume, C. Gomez, G. Sierra, Phys. Lett. B 220, 142 (1989) http://dx.doi.org/10.1016/0370-2693(89)90027-0[Crossref]
  • [10] G. Moore, N. Reshetikhin, Nucl. Phys. B 328, 557 (1989) http://dx.doi.org/10.1016/0550-3213(89)90219-8[Crossref]
  • [11] R. B. Zhang, M. D. Gould, A. J. Bracken, Commun. Math. Phys. 137, 13 (1989). http://dx.doi.org/10.1007/BF02099115[Crossref]
  • [12] S. Majid, Fondation of Quantum Group Theory, (Cambridge University Press, Cambridge, 1995) http://dx.doi.org/10.1017/CBO9780511613104[Crossref]
  • [13] J. Mourad, Classical Quant. Grav. 12, 965 (1995) http://dx.doi.org/10.1088/0264-9381/12/4/007[Crossref]
  • [14] J. Madore, An Introduction to Noncommutative Differential Geometry and Its Applications, 2nd edition (Cambridge University Press, Cambridge, 2000)
  • [15] P. G. Castro, B. Chakraborty, Z. Kuznetsova, F. Toppan, Cent. Eur. J. Phys. 9, 841 (2011) http://dx.doi.org/10.2478/s11534-010-0078-9[Crossref]
  • [16] A. A. Altıntaş, M. Arık, A. S. Arıkan, Cent. Eur. J. Phys. 8, 819 (2010) http://dx.doi.org/10.2478/s11534-009-0168-8[Crossref]
  • [17] R. M. Ubriaco, J. Phys. A Math. Gen. 25, 169 (1992) http://dx.doi.org/10.1088/0305-4470/25/1/021[Crossref]
  • [18] S. L. Woronowicz, Commun. Math. Phys. 122, 125 (1989) http://dx.doi.org/10.1007/BF01221411[Crossref]
  • [19] J. Wess, B. Zumino, Nucl. Phys. 18, 302 (1990)
  • [20] T. Brzezinski, Lett. Math. Phys. 27, 287 (1993) http://dx.doi.org/10.1007/BF00777376[Crossref]
  • [21] A. Sudbery, Phys. Lett. B 284, 61 (1992) http://dx.doi.org/10.1016/0370-2693(92)91925-Y[Crossref]
  • [22] T. Kobayashi, T. Uematsu, Z. Phys. 56, 193 (1992)
  • [23] A. El Hassouni, Y. Hassouni, E. H. Tahri, Int. J. Theor. Phys. 35, 2517 (1996) http://dx.doi.org/10.1007/BF02085760[Crossref]
  • [24] P. Bouwknegt, J. McCarthy, P. Nieuwenhuizen, Phys. Lett. B 394, 82 (1997) http://dx.doi.org/10.1016/S0370-2693(96)01679-6[Crossref]
  • [25] N. Aizawa, R. Chakrabarti, J. Math. Phys. 45, 1623 (2004) http://dx.doi.org/10.1063/1.1650538[Crossref]
  • [26] E. M. Falaki, E. H. Tahri, J. Phys. A Math. Gen. 34, 3403 (2001) http://dx.doi.org/10.1088/0305-4470/34/16/308[Crossref]
  • [27] R. Coquereaux, A. O. Garcia, R. Trinchero, Rev. Math. Phys. 12, 227 (2000) http://dx.doi.org/10.1142/S0129055X00000095[Crossref]
  • [28] E. Baz, Mod. Phys. Lett. A 21, 2323 (2006) http://dx.doi.org/10.1142/S0217732306020536[Crossref]
  • [29] Z. Bentalha, M. Tahiri, Int. J. Geom. Methods M. 4, 1087 (2007) http://dx.doi.org/10.1142/S0219887807002442[Crossref]
  • [30] A. Sudbery, In: T. Curtright, D. Fairlie, and C. Zachos (Eds), Proceedings of the Workshop on Quantum Groups, 1990, Chicago, USA (World Scientific, Singapore, 1991) 697
  • [31] V. K. Dobrev, J. Math. Phys. 33, 3419 (1992) http://dx.doi.org/10.1063/1.529890[Crossref]
  • [32] S. A. Celik, E. Yasar, Czech. J. Phys. 56, 229 (2006) http://dx.doi.org/10.1007/s10582-006-0083-9[Crossref]
  • [33] P. N. Watts, PhD Thesis, University of California (Berkeley, USA, 1994)
  • [34] S. Celik, E. M. Özkan, E. Yasar, Turk. J. Math. 33, 75 (2009)
  • [35] M. Ozavşar, G. Yesilot, Int. J. Geom. Methods M. 8, 1667 (2011) http://dx.doi.org/10.1142/S0219887811005877[Crossref]
  • [36] M. Özavşar, G. Yesilot, Eur. J. Pure Appl. Math. 5, 297 (2012)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0092-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.