PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 10 | 5 | 1095-1101
Tytuł artykułu

Sliding observer for synchronization of fractional order chaotic systems with mismatched parameter

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose an observer-based fractional order chaotic synchronization scheme. Our method concerns fractional order chaotic systems in Brunovsky canonical form. Using sliding mode theory, we achieve synchronization of fractional order response with fractional order drive system using a classical Lyapunov function, and also by fractional order differentiation and integration, i.e. differintegration formulas, state synchronization proved to be established in a finite time. To demonstrate the efficiency of the proposed scheme, fractional order version of a well-known chaotic system; Arnodo-Coullet system is considered as illustrative examples.
Wydawca

Czasopismo
Rocznik
Tom
10
Numer
5
Strony
1095-1101
Opis fizyczny
Daty
wydano
2012-10-01
online
2012-11-21
Twórcy
  • Department of Electrical Engineering, Hamedan University of Technology, Hamedan, 65155, Iran, delavari@hut.ac.ir
  • Young Researchers club, Central Tehran Branch, Islamic Azad University, Tehran, Iran, d.senejohnny@gmail.com
Bibliografia
  • [1] E. Goldfain, Commun. Nonlinear Sci. 13, 1397 (2008) http://dx.doi.org/10.1016/j.cnsns.2006.12.007[Crossref]
  • [2] G. M. Zaslavsky, Phys. Rep. 371, 461 (2002) http://dx.doi.org/10.1016/S0370-1573(02)00331-9[Crossref]
  • [3] A. Piryatinska, A. I. Saichev, W. A. Woyczynski, Physica A 349, 375 (2005) http://dx.doi.org/10.1016/j.physa.2004.11.003[Crossref]
  • [4] W. Chen, S. Holm, J. Acoust. Soc. Am. 115, 1424 (2004) http://dx.doi.org/10.1121/1.1646399[Crossref]
  • [5] T. F. Nonnenmacher, In: Lecture Notes in Physics 381 (Springer, Berlin, 1991) 309
  • [6] H. Weitzner, G. M. Zaslavsky, Commun. Nonlinear Sci. 8, 273 (2003) http://dx.doi.org/10.1016/S1007-5704(03)00049-2[Crossref]
  • [7] N. Laskin, Phys. Rev. E 66, 056108 (2002) http://dx.doi.org/10.1103/PhysRevE.66.056108[Crossref]
  • [8] E. Goldfain, Chaos Soliton. Fract. 19, 209 (2004) http://dx.doi.org/10.1016/S0960-0779(03)00304-7[Crossref]
  • [9] E. Goldfain, Chaos Soliton. Fract. 23, 701 (2005) http://dx.doi.org/10.1016/j.chaos.2004.05.020[Crossref]
  • [10] I. Podlubny, Fract. Calc. Appl. Anal. 5, 1 (2002)
  • [11] E. M. Rabei, I. Almayteh, S. I. Muslih, D. Baleanu, Phys. Scripta 77, 015101 (2008) http://dx.doi.org/10.1088/0031-8949/77/01/015101[Crossref]
  • [12] D. Baleanu, S. I. Muslih, Phys. Scripta 72, 119 (2008) http://dx.doi.org/10.1238/Physica.Regular.072a00119[Crossref]
  • [13] E. Bai, K. Lonngren, J. Sprott, Chaos Soliton. Fract. 13, 1515 (2002) http://dx.doi.org/10.1016/S0960-0779(01)00160-6[Crossref]
  • [14] Q. Zhang, S. Chen, Y. Hu, C. Wang, Physica A 371 (2006)
  • [15] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.821[Crossref]
  • [16] J. L. Mata-Machuca, R. Martinez-Guerra, R. Aguilar-Lopez, Commun. Nonlinear Sci. 15, 4114 (2010) http://dx.doi.org/10.1016/j.cnsns.2010.01.040[Crossref]
  • [17] M. Feki, Phys. Lett. A 309, 53 (2003) http://dx.doi.org/10.1016/S0375-9601(03)00171-3[Crossref]
  • [18] J. S. Lin, J. J. Yan, T. L. Liao, Chaos Soliton. Fract. 24, 597 (2005) http://dx.doi.org/10.1016/j.chaos.2004.09.031[Crossref]
  • [19] A. Rodriguez, J. De Leon, L. Fridman, Chaos Soliton. Fract. 42, 3219 (2009) http://dx.doi.org/10.1016/j.chaos.2009.04.055[Crossref]
  • [20] W. Yoo, D. Ji, S. Won, Phys Lett A. 374, 1354 (2010) http://dx.doi.org/10.1016/j.physleta.2010.01.023[Crossref]
  • [21] K. E. Starkov, L. N. Coria, L. T. Aguilar, Commun. Nonlinear Sci. 17, 17 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.04.020[Crossref]
  • [22] W. H. Deng, C. P. Li, Physica A 353, 61 (2005) http://dx.doi.org/10.1016/j.physa.2005.01.021[Crossref]
  • [23] J. Yan, C. P. Li, Chaos, Soliton. Fract. 32, 751 (2007) http://dx.doi.org/10.1016/j.chaos.2005.11.062[Crossref]
  • [24] V. D. Gejji, S. Bhalekar, Comput. Appl. Math. 59, 1117 (2010) http://dx.doi.org/10.1016/j.camwa.2009.07.003[Crossref]
  • [25] K. B. Oldham, J. Spanier, The fractional calculus (Academic Press, New York and London, 1974)
  • [26] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)
  • [27] I. Podlubny, Fractional differential equations (Academic Press, California, 1999)
  • [28] R. Hilfer, Application of Fractional Calculus in Physics (World Scientific, New Jersey, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [29] M. O. Efe, IEEE T. Syst. Man Cy. B 38, 1561 (2008) http://dx.doi.org/10.1109/TSMCB.2008.928227[Crossref]
  • [30] B. M. Vinagre, A. J. Calderon, In: Proc. 7th CONTROLO, Sep. 11–13, 2006, Lisbon, Portugal
  • [31] P. Brunovsky, Kybernetika 6, 176 (1970) http://dx.doi.org/10.1007/BF00273963[Crossref]
  • [32] S. Derivire, M.A. Aziz Alaoui, Le Havre, France, (2001)
  • [33] M. Shahiri, R. Ghaderi, A. Ranjbar, S.H. Hosseinnia, S. Momani, Commun. Nonlinear Sci. 15 (2010)
  • [34] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)
  • [35] M. S. Tavazoei, M. Haeri, IET Signal Process. 4 (2007)
  • [36] Z. Shuqin, Nonlinear Analysis. 71 (2009)
  • [37] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations (Pitman Pub. Co., Boston, 1985)
  • [38] B. Ahmad, S. Sivasundaram, Comput. Appl. Math. 197, 515 (2008) http://dx.doi.org/10.1016/j.amc.2007.07.065[Crossref]
  • [39] D. M. Senejohnny, H. Delavari, Commun. Nonlinear Sci. (2012)
  • [40] D. M. Senejohnny, H. Delavari, Signal, Image and Video Processing, (2012)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0073-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.