Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The probabilistic solutions of nonlinear stochastic oscillators with even nonlinearity driven by Poisson white noise are investigated in this paper. The stationary probability density function (PDF) of the oscillator responses governed by the reduced Fokker-Planck-Kolmogorov equation is obtained with exponentialpolynomial closure (EPC) method. Different types of nonlinear oscillators are considered. Monte Carlo simulation is conducted to examine the effectiveness and accuracy of the EPC method in this case. It is found that the PDF solutions obtained with EPC agree well with those obtained with Monte Carlo simulation, especially in the tail regions of the PDFs of oscillator responses. Numerical analysis shows that the mean of displacement is nonzero and the PDF of displacement is nonsymmetric about its mean when there is even nonlinearity in displacement in the oscillator. Numerical analysis further shows that the mean of velocity always equals zero and the PDF of velocity is symmetrically distributed about its mean.
Czasopismo
Rocznik
Tom
Numer
Strony
702-707
Opis fizyczny
Daty
wydano
2012-06-01
online
2012-06-17
Twórcy
autor
- Faculty of Science and Technology, University of Macau, Macau SAR, China, yb07409@umac.mo
autor
- Faculty of Science and Technology, University of Macau, Macau SAR, China, gker@umac.mo
Bibliografia
- [1] T.T. Soong, Random Differential Equations in Science and Enginnering (Academic Press, New York, 1973)
- [2] H. Risken, T. Frank, Fokker-Planck Equation: Methods of Solution and Applications (Springer-Verlag, Berlin, 1989) http://dx.doi.org/10.1007/978-3-642-61544-3[Crossref]
- [3] K. Sobczyk, Stochastic Differential Equations with Application to Science and Engineering (Kluwer, Boston, 1991)
- [4] O. Schmitz, S.K. Hammpel, H. Eul, D. Schwingshackl, Adv. Radio. Sci. 5, 265 (2007) http://dx.doi.org/10.5194/ars-5-265-2007[Crossref]
- [5] A.K. Chaudhary, V.B. Bhatia, M.K. Das, R.K. Tavakol, J. Astrophys. Astr. 16, 45 (1995) http://dx.doi.org/10.1007/BF02702485[Crossref]
- [6] C.W.S. To, D.M. Li, Prob. Eng. Mech. 6, 184 (1991) http://dx.doi.org/10.1016/0266-8920(91)90009-S[Crossref]
- [7] L. Cveticanin, Publication de l’Institut Mathe. 85, 119 (2009) http://dx.doi.org/10.2298/PIM0999119C[Crossref]
- [8] R.A. Ibrahim, A. Soundararajan, Int. J. Non-Linear Mech. 20, 309 (1985) http://dx.doi.org/10.1016/0020-7462(85)90039-3[Crossref]
- [9] G. Schmidt, Z. Angew. Math. Mech. 60, 409 (1981) http://dx.doi.org/10.1002/zamm.19800600906[Crossref]
- [10] R.A. Ibrahim, A. Soundararajan, J. Sound Vib. 91, 119 (1983) http://dx.doi.org/10.1016/0022-460X(83)90455-8[Crossref]
- [11] J.B. Roberts, J. Sound Vib. 24, 23 (1972) http://dx.doi.org/10.1016/0022-460X(72)90119-8[Crossref]
- [12] R.C. Booton, IRE Trans. Circuit Theory 1, 9 (1954)
- [13] T.K. Caughey, ASME J. Appl. Mech. 26, 341 (1959)
- [14] G.Q. Cai, J. Sound Vib. 278, 889 (2004) http://dx.doi.org/10.1016/j.jsv.2003.10.030[Crossref]
- [15] L. Socha, Linearization Methods for Stochastic Dynamic Systems (Springer, Berlin, 2008)
- [16] G.Q. Cai, Y.K. Lin, Int. J. Non-Linear Mech. 27, 955 (1992) http://dx.doi.org/10.1016/0020-7462(92)90048-C[Crossref]
- [17] R. Iwankiewicz, S.R.K. Nielsen, J. Sound Vib. 156, 407 (1992) http://dx.doi.org/10.1016/0022-460X(92)90736-H[Crossref]
- [18] Z.Y. Su, J.M. Falzarano, Int. Ship. Prog. 58, 97 (2011)
- [19] H.U. Kölüğlu, S.R.K. Nielsen, R. Iwankiewicz, J. Sound Vib. 176, 19 (1994) http://dx.doi.org/10.1006/jsvi.1994.1356[Crossref]
- [20] H.U. Kölüğlu, S.R.K. Nielsen, R. Iwankiewicz, J. Eng. Mech. ASCE 121, 117 (1995) http://dx.doi.org/10.1061/(ASCE)0733-9399(1995)121:1(117)[Crossref]
- [21] S.F. Wojtkiewicz, E.A. Johnson, L.A. Bergman, M. Grigoriu, B.F. Spencer Jr., Comput. Methods Appl. Mech. Eng. 168, 73 (1999) http://dx.doi.org/10.1016/S0045-7825(98)00098-X[Crossref]
- [22] R.S. Langley, J. Sound Vib. 101(1), 41 (1985) http://dx.doi.org/10.1016/S0022-460X(85)80037-7[Crossref]
- [23] G.K. Er, S.S. Guo, In: G. Deodatis and P.D. Spanos (Ed.), International Conference of Computational Stochastic Mechanics, 13–16 June, 2010, Rhodes, Greece (Research Publishing Services, Singapore 2011) 230
- [24] G.K. Er, Nonlinear Dyn. 17, 285 (1998) http://dx.doi.org/10.1023/A:1008346204836[Crossref]
- [25] G.K. Er, ASME J. Appl. Mech. 67, 355 (2000) http://dx.doi.org/10.1115/1.1304842[Crossref]
- [26] G.K. Er, H.T. Zhu, V.P. Iu, K.P. Kou, AIAA J. 46, 2839 (2008) http://dx.doi.org/10.2514/1.36556[Crossref]
- [27] H.T. Zhu, G.K. Er, V.P. Iu, K.P. Kou, J. Sound Vib. 330, 2900 (2011) http://dx.doi.org/10.1016/j.jsv.2011.01.005[Crossref]
- [28] G.K. Er, Annalen der Physik 523, 247 (2011) http://dx.doi.org/10.1002/andp.201010465[Crossref]
- [29] G.K. Er, V.P. Iu, In: W.Q. Zhu, Y.K. Lin, G.Q. Cai (Ed.), IUTAM Symposium on Nonlinear Stochastic Dynamics and Control, 10–14 May, 2011, Hangzhou, China (Springer, 2011) IUTAM book series 29, 25
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0062-7