Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 10 | 4 | 779-788
Tytuł artykułu

Effect of kinesin velocity distribution on slow axonal transport

Treść / Zawartość
Warianty tytułu
Języki publikacji
The goal of this paper is to investigate the effect that a distribution of kinesin motor velocities could have on cytoskeletal element (CE) concentration waves in slow axonal transport. Previous models of slow axonal transport based on the stop-and-go hypothesis (P. Jung, A. Brown, Modeling the slowing of neurofilament transport along the mouse sciatic nerve, Physical Biology 6 (2009) 046002) assumed that in the anterograde running state all CEs move with one and the same velocity as they are propelled by kinesin motors. This paper extends the aforementioned theoretical approach by allowing for a distribution of kinesin motor velocities; the distribution is described by a probability density function (PDF). For a two kinetic state model (that accounts for the pausing and running populations of CEs) an analytical solution describing the propagation of the CE concentration wave is derived. Published experimental data are used to obtain an analytical expression for the PDF characterizing the kinesin velocity distribution; this analytical expression is then utilized as an input for computations. It is demonstrated that accounting for the kinesin velocity distribution increases the rate of spreading of the CE concentration waves, which is a significant improvement in the two kinetic state model.

Opis fizyczny
  • Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC, 27695-7910, USA,
  • [1] J.R. Fallon, A.B. Taylor, Protein Synthesis in Neurons, Encyclopedia of Life Sciences (Wiley, Hoboken, NJ, 2005)
  • [2] B. Alberts et al., Molecular Biology of the Cell, 5th ed. (Garland Science, New York, 2008)
  • [3] L.S.B. Goldstein, Z.H. Yang, Annu. Rev. Neuroscience 23, 39 (2000)[Crossref]
  • [4] S. Ally et al., J. Cell Biol. 187, 1071 (2009)[Crossref]
  • [5] P.E. Gallant, J. Neurocytology 29, 779 (2000)[Crossref]
  • [6] S.P. Gross, Phys. Biol. 1, R1 (2004)[Crossref]
  • [7] A.D. Pilling, D. Horiuchi, C.M. Lively, W.M. Saxton, Molec. Biol. Cell 17, 2057 (2006)[Crossref]
  • [8] M.A. Welte, Curr. Biol. 14, R525 (2004)[Crossref]
  • [9] J.V. Shah, D.W. Cleveland, Curr. Opinion Cell Biol. 14,58 (2002)[Crossref]
  • [10] R.B. Vallee, G.S. Bloom, Annu. Rev. Neuroscience 14,59 (1991)[Crossref]
  • [11] S. Roy et al., J. Neuroscience 27, 3131 (2007)[Crossref]
  • [12] J.T. Yabe, A. Pimenta, T.B. Shea, J. Cell Sci. 112, 3799 (1999)
  • [13] J.T. Yabe, C.W. Jung, W.K.H. Chan, T.B. Shea, Cell Motility and the Cytoskeleton 45, 249 (2000)<249::AID-CM1>3.0.CO;2-M[Crossref]
  • [14] J.V. Shah, L.A. Flanagan, P.A. Janmey, J.F. Leterrier, Molec. Biol. Cell 11, 3495 (2000)
  • [15] C.H. Xia et al., J. Cell Biol. 161, 55 (2003)[Crossref]
  • [16] P.W. Baas, D.W. Buster, J. Neurobiology 58, 3 (2004)[Crossref]
  • [17] S. Roy et al., J. Neuroscience 28, 5248 (2008)[Crossref]
  • [18] S. Terada et al., EMBO Journal 29, 843 (2010)[Crossref]
  • [19] A. Brown, L. Wang, P. Jung, Molec. Biol. Cell 16, 4243 (2005)[Crossref]
  • [20] A. Craciun, A. Brown, A. Friedman, J. Theor. Biol. 237, 316 (2005)[Crossref]
  • [21] A. Brown, Nat. Rev. Molec. Cell Biol. 1, 153 (2000)[Crossref]
  • [22] N. Trivedi, P. Jung, A. Brown, J. Neuroscience 27, 507 (2007)[Crossref]
  • [23] P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009)[Crossref]
  • [24] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. J. Num. Meth. Biomed. Eng. 27, 1040 (2011)[Crossref]
  • [25] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, J. Mechan. Med. Biol. 10, 445 (2010)[Crossref]
  • [26] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Commun. Heat Mass Trans. 37, 770 (2010)[Crossref]
  • [27] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Commun. Heat Mass Trans. 36, 641 (2009)[Crossref]
  • [28] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Commun. Heat Mass Trans. 36, 293 (2009)[Crossref]
  • [29] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Cent. Eur. J. Phys. 9, 898 (2011)[Crossref]
  • [30] A.V. Kuznetsov, Cent. Eur. J. Phys. 9, 662 (2011)[Crossref]
  • [31] A.V. Kuznetsov, Comp. Methods Biomechanics Biomedical Eng., (2012), DOI: 10.1080/10255842.2012.662679, in press [Crossref]
  • [32] A.V. Kuznetsov, Proceedings of the Royal Society A, DOI: 10.1098/rspa.2012.0061, in press (2011) [Crossref]
  • [33] Z. Xu, V. Tung, Brain Res. 866, 326 (2000)[Crossref]
  • [34] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon press, Oxford, 1959)
  • [35] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions (Dover Publications, Mineola, NY, 1965)
  • [36] S. Courty et al., Nano Let. 6, 1491 (2006)[Crossref]
  • [37] A.V. Kuznetsov, Comp. Meth. Biomechanics Biomedical Eng., (2011), DOI: 10.1080/10255842.2011.632376, in press [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.