Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The problem of extending quantum-mechanical formal scattering theory to a more general class of models that also includes quantum field theories is discussed, with the aim of clarifying certain aspects of the definition of scattering states. As the strong limit is not suitable for the definition of scattering states in quantum field theory, some other limiting procedure is needed. Two possibilities are considered, the abelian limit and adiabatic switching. Formulas for the scattering states based on both methods are discussed, and it is found that generally there are significant differences between the two approaches. As an illustration of the applications and the features of these formulas, S-matrix elements and energy corrections in two quantum field theoretical models are calculated using (generalized) old-fashioned perturbation theory. The two methods are found to give equivalent results.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
349-360
Opis fizyczny
Daty
wydano
2012-04-01
online
2012-03-31
Twórcy
autor
- Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, P.O.B. 49, 1525, Budapest, Hungary, tgzs@rmki.kfki.hu
Bibliografia
- [1] S. Weinberg, The quantum theory of fields I, (Cambridge University Press, Cambridge, New York, 1995–2000)
- [2] J. R. Taylor, Scattering theory: the quantum theory on nonrelativistic collisions (Wiley, New York, NY, 1972)
- [3] R. Newton, Scattering theory of waves and particles, 2nd edition (Springer-Verlag, Berlin, 1982)
- [4] G. Delfino, G. Mussardo, P. Simonetti, Nucl. Phys. B 473, 469 (1996) http://dx.doi.org/10.1016/0550-3213(96)00265-9[Crossref]
- [5] G. Zs. Toth, Cent. Eur. J. Phys. 8, 527 (2010) http://dx.doi.org/10.2478/s11534-009-0139-0[Crossref]
- [6] M. Gell-Mann, M. L. Goldberger, Phys. Rev. 91, 398 (1953) http://dx.doi.org/10.1103/PhysRev.91.398[Crossref]
- [7] M. L. Goldberger, K. M. Watson, Collision theory, Chapter 5 (Wiley, New York, NY, 1967)
- [8] M. E. Peskin, D. V. Schroeder, An introduction to quantum field theory (Addison-Wesley, Reading, Mass., 1995)
- [9] J. D. Dollard, J. Math. Phys. 7, 802 (1966) http://dx.doi.org/10.1063/1.1931210[Crossref]
- [10] M. Gell-Mann, F. Low, Phys. Rev. 84, 350 (1951) http://dx.doi.org/10.1103/PhysRev.84.350[Crossref]
- [11] A. L. Fetter, J. D. Walecka, Quantum theory of manyparticle systems, Chapter 3 (Dover Publications, Mineola, New York, 2003)
- [12] C. Brouder, G. Panati, G. Stoltz, Phys. Rev. A 78, 042102 (2008) http://dx.doi.org/10.1103/PhysRevA.78.042102[Crossref]
- [13] C. Brouder, G. Panati, G. Stoltz, Ann. Henri Poincare 10, 1285 (2010) http://dx.doi.org/10.1007/s00023-009-0018-7[Crossref]
- [14] C. Brouder, G. Panati, G. Stoltz, Phys. Rev. Lett. 103 23, 230401 (2009) http://dx.doi.org/10.1103/PhysRevLett.103.230401[Crossref]
- [15] L. G. Molinari, J. Math. Phys. 48, 052113 (2007) http://dx.doi.org/10.1063/1.2740469[Crossref]
- [16] J. E. Avron, A. Elgart, Commun. Math. Phys. 203, 445 (1999) http://dx.doi.org/10.1007/s002200050620[Crossref]
- [17] A. Weber, N. E. Ligterink, Phys. Rev. D 65, 025009 (2001) http://dx.doi.org/10.1103/PhysRevD.65.025009[Crossref]
- [18] A. Weber, Conf. Proc. 531, 305 (2000) http://dx.doi.org/10.1063/1.1315054[Crossref]
- [19] G. Delfino, G. Mussardo, P. Simonetti, Nucl. Phys. B 432, 518 (1994) http://dx.doi.org/10.1016/0550-3213(94)90032-9[Crossref]
- [20] J. D. Bjorken, S. D. Drell, Relativistic quantum fields (McGraw-Hill, New York, NY, 1965)
- [21] C. Itzykson, J.-B. Zuber, Quantum field theory (Dover Publications, Mineola, New York, 2005)
- [22] R. Haag, Local Quantum Physics: Fields, Particles, Algebras, 2nd edition (Springer-Verlag, Berlin, 1996)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0119-z