Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 10 | 2 | 405-413
Tytuł artykułu

Dynamical and structural symmetries for the highest Landau levels on the AdS 2

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to use the recurrence relations with respect to both indices of the associated Legendre functions for the extraction of the Dirac quantization condition and dynamical symmetry group U(1, 1) corresponding to the highest Landau levels on the hyperbolic plane with uniform magnetic field B. Irreducible representations of the su(2) algebra are obtained by the ladder differential operators which change B by 1/2 unit and mode number by one unit. Two different classes of the irreducible representations of SU(1, 1) with the even and odd boson numbers 2B − 1/2 are extracted for the Bargmann indices 1/4 and 3/4, respectively. Finally, we show that shape invariance symmetry is realized by the ladder operators which shift only the magnetic field B by 1/2 unit.
Wydawca

Czasopismo
Rocznik
Tom
10
Numer
2
Strony
405-413
Opis fizyczny
Daty
wydano
2012-04-01
online
2012-03-31
Twórcy
  • Department of Theoretical Physics and Astrophysics, Faculty of Physics, University of Tabriz, P. O. Box 51666-16471, Tabriz, Iran
  • School of Physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran, hfakhri@tabrizu.ac.ir
Bibliografia
  • [1] L. Landau, E. Lifchitz, Quantum mechanics: non relativistic theory (Pergamon, New York 1977)
  • [2] J. M. Ferreyra, C. R. Proetto, J. Phys. Condens. Mat. 6, 6623 (1994) http://dx.doi.org/10.1088/0953-8984/6/33/010[Crossref]
  • [3] N. Rohringer, J. Burgdorfer, N. Macris, J. Phys. A Math. Gen. 36, 4173 (2003) http://dx.doi.org/10.1088/0305-4470/36/14/318[Crossref]
  • [4] H. Fakhri, J. Phys. A Math. Gen. 37, 5203 (2004) http://dx.doi.org/10.1088/0305-4470/37/19/007[Crossref]
  • [5] Z. Mouayn, Rep. Math. Phys. 55, 269 (2005) http://dx.doi.org/10.1016/S0034-4877(05)80032-1[Crossref]
  • [6] S. J. Yang, Z. Tao, Y. Yu, S. Feng, J. Phys. Condens. Mat. 18, 11255 (2006) http://dx.doi.org/10.1088/0953-8984/18/49/017[Crossref]
  • [7] P. F. Bracken, Int. J. Theor. Phys. 46, 119 (2007) http://dx.doi.org/10.1007/s10773-006-9218-9[Crossref]
  • [8] S. Twareque Ali, F. Bagarello, J. Math. Phys. 49, 032110 (2008) http://dx.doi.org/10.1063/1.2898117[Crossref]
  • [9] A. Comtet, Ann. Phys. New York 173, 185 (1987) http://dx.doi.org/10.1016/0003-4916(87)90098-4[Crossref]
  • [10] M. Antoine, A. Comtet, S. Ouvry, J. Phys. A Math. Gen. 23, 3699 (1990) http://dx.doi.org/10.1088/0305-4470/23/16/018[Crossref]
  • [11] G. V. Dunne, Ann. Phys. New York 215, 233 (1992) http://dx.doi.org/10.1016/0003-4916(92)90112-Y[Crossref]
  • [12] S. Kim, C. Lee, Ann. Phys. New York 296, 390 (2002) http://dx.doi.org/10.1006/aphy.2002.6224[Crossref]
  • [13] T. T. Wu, C. N. Yang, Nucl. Phys. B107, 365 (1976) http://dx.doi.org/10.1016/0550-3213(76)90143-7[Crossref]
  • [14] S. C. Zhang, J. P. Hu, Science 294, 823 (2001) http://dx.doi.org/10.1126/science.294.5543.823[Crossref]
  • [15] E. Schrödinger, P. Roy. Irish. Acad. A46, 9 (1940)
  • [16] E. Schrödinger, P. Roy. Irish. Acad. A47, 53 (1941)
  • [17] L. Infeld, T. E. Hull, Rev. Mod. Phys. 23, 21 (1951) http://dx.doi.org/10.1103/RevModPhys.23.21[Crossref]
  • [18] L. E. Gendenshtein, JETP Lett. 38, 356 (1983)
  • [19] L. E. Gendenshtein, I. V. Krive, Sov. Phys. Uspekhi 28, 645 (1985) http://dx.doi.org/10.1070/PU1985v028n08ABEH003882[Crossref]
  • [20] F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995) http://dx.doi.org/10.1016/0370-1573(94)00080-M[Crossref]
  • [21] A. Balantekin, Phys. Rev. A57, 4188 (1998)
  • [22] A. B. Balantekin, M. A. C. Ribeiro, A. N. F. Aleixo, J. Phys. A Math. Gen. 32, 2785 (1999) http://dx.doi.org/10.1088/0305-4470/32/15/007[Crossref]
  • [23] J. F. Carinena, A. Ramos, J. Phys. A Math. Gen. 33, 3467 (2000) http://dx.doi.org/10.1088/0305-4470/33/17/305[Crossref]
  • [24] A. Del Sol Mesa, C. Quesne, J. Phys. A Math. Gen. 35, 2857 (2002) http://dx.doi.org/10.1088/0305-4470/35/12/310[Crossref]
  • [25] H. Fakhri, A. Chenaghlou, J. Phys. A Math. Gen. 37, 3429 (2004) http://dx.doi.org/10.1088/0305-4470/37/10/008[Crossref]
  • [26] H. Fakhri, A. Chenaghlou, J. Phys. A Math. Gen. 37, (2004) 7499 http://dx.doi.org/10.1088/0305-4470/37/30/008[Crossref]
  • [27] N. Cotfas, Cent. Eur. J. Phys. 2, 456 (2004) http://dx.doi.org/10.2478/BF02476425[Crossref]
  • [28] N. Cotfas, Cent. Eur. J. Phys. 4, 318 (2006) http://dx.doi.org/10.2478/s11534-006-0023-0[Crossref]
  • [29] H. Fakhri, B. Mojaveri, M. A. Gomshi Nobary, Rep. Math. Phys. 66, 299 (2010) http://dx.doi.org/10.1016/S0034-4877(11)00002-4[Crossref]
  • [30] H. Fakhri, M. Shariati, J. Phys. A Math. Gen. 37, L539 (2004) http://dx.doi.org/10.1088/0305-4470/37/44/L01[Crossref]
  • [31] R. Iengo, R. Ramachandran, J. High Energy Phys. 02, 017 (2002) http://dx.doi.org/10.1088/1126-6708/2002/02/017[Crossref]
  • [32] H. Bateman, A. Erdelyi, Higher transcendental functions, vol. I (McGraw Hill, New York, 1953)
  • [33] N. J. Vilenkin, A. U. Klimyk, Representations of lie groups and special functions vol. II (Dordrecht, Kluwer, 1993)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0113-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.