Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 9 | 2 | 519-529
Tytuł artykułu

Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates

Treść / Zawartość
Warianty tytułu
Języki publikacji
This theoretical study focuses on junctions between the carbon nanotubes (CNTs) and contacting metallic elements of a nanocircuit. Numerical simulations on the conductance and resistance of these contacts have been performed using the multiple scattering theory and the effective media cluster approach. Two models for CNT-metal contacts have been considered in this paper: a) first principles “liquid metal” model and b) semi-empirical model of “effective bonds” based on Landauer notions on ballistic conductivity. Within the latter, which is a more adequate description of chirality effects, we have simulated both single-wall (SW) and multi-wall (MW) CNTs with different morphology. Results of calculations on resistance for different CNT-Me contacts look quantitatively realistic (from several to hundreds kOhm, depending on chirality, diameter and thickness of MW CNT). The inter-wall transparency coefficient for MW CNT has been also simulated, as an indicator of possible ‘radial current’ losses.

Opis fizyczny
  • Institute of Solid State Physics, University of Latvia, Riga, Latvia,
  • [1] M. Ahlskog, Ch. Laurent, M. Baxendale, M. Huhtala, In: H. S. Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology, Vol. 3 (American Sci. Publishers, Valencia, CA, 2004) 139
  • [2] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996)
  • [3] S.J. Tans, R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)[Crossref]
  • [4] J. Tersoff, Appl. Phys. Lett. 74, 2122 (1999)[Crossref]
  • [5] Yu.N. Shunin, K.K. Schwartz, In: R.C. Tennyson, A.E. Kiv (Eds.), Computer Modelling of Electronic and Atomic Processes in Solids (Kluwer Acad. Publisher, Dodrecht, Boston, London, 1997) 241
  • [6] Yu.N. Shunin, DSc Habil. thesis, University of Latvia (Riga-Salaspils, Latvia, 1991)
  • [7] E.L. Economou, Green’s Functions in Quantum Physics, 3rd edition, Solid State Ser. Vol. 7 (Springer Verlag, Berlin, Heidelberg, 2006)
  • [8] J.M. Ziman, Models of Disorder (Cambridge Univ. Press, London, New York, 1979)
  • [9] R. Gaspar, Acta Phys. Acad. Sci. Hung. 2, 15 (1952)
  • [10] R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954)[Crossref]
  • [11] J.C. Slater, The Self-Consistent Field for Molecules and Solids, Vol. 4 (McGraw-Hill Book Company, New York, 1974)
  • [12] H. Ehrenreich, L. Schwartz, The Electronic Structure of Alloys, Solid State Phys. Vol. 31 (Academic Press, New York, San Francisco, London, 1976)
  • [13] M.F. Lin, K.W.-K. Shung, Phys. Rev. B 47, 6617 (1993)[Crossref]
  • [14] G. Gumbs, G.R. Aizin, Phys. Rev. B 65, 195407 (2002)[Crossref]
  • [15] G. Gumbs, A. Balassis, Phys. Rev. B 71, 235410 (2005)[Crossref]
  • [16] Yu.N. Shunin, Yu.F. Zhukovskii, S. Bellucci, Computer Modellingand New Technologies 12(2), 66 (2008)
  • [17] P. Soven, Phys. Rev. 156, 809 (1967)[Crossref]
  • [18] D. Stone, A. Szafer, IBMJ. Res. Dev. 32, 384 (1988)[Crossref]
  • [19] F. Ding et al., Nano Lett. 8, 463 (2008)[Crossref]
  • [20] Yu.N. Shunin, In: H. Dosch, M.H. Van de Voorde (Eds.), GENNESYS White Paper (Max-Planck-Institutfür Metallforschung, Stuttgart, 2009) 8
  • [21] S. Uryu, Phys. Rev. B 69, 075402 (2004)[Crossref]
  • [22] A.M. Lunde, K. Flensberg, A.-P. Jauho, Phys. Rev. B 71, 125408 (2005)[Crossref]
  • [23] Z. Kordrostami, M.H. Sheikhi, R. Mohammadzadegan, Fuller. Nanotub. Car. N. 16, 66 (2008)[Crossref]
  • [24] J.-O. Lee, J. Phys. D: Appl. Phys. 33, 1953 (2000)[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.