PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | 9 | 3 | 816-824
Tytuł artykułu

Effect of side walls on the motion of a viscous fluid induced by an infinite plate that applies an oscillating shear stress to the fluid

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The velocity field corresponding to the unsteady motion of a viscous fluid between two side walls perpendicular to a plate is determined by means of the Fourier transforms. The motion of the fluid is produced by the plate which after the time t = 0, applies an oscillating shear stress to the fluid. The solutions that have been obtained, presented as a sum of the steady-state and transient solutions satisfy the governing equation and all imposed initial and boundary conditions. In the absence of the side walls they are reduced to the similar solutions corresponding to the motion over an infinite plate. Finally, the influence of the side walls on the fluid motion, the required time to reach the steady-state, as well as the distance between the walls for which the velocity of the fluid in the middle of the channel is unaffected by their presence, are established by means of graphical illustrations.
Wydawca

Czasopismo
Rocznik
Tom
9
Numer
3
Strony
816-824
Opis fizyczny
Daty
wydano
2011-06-01
online
2011-02-26
Twórcy
  • Department of Theoretical Mechanics, Technical University of Iasi, 700050, Iasi, Romania
  • Department of Theoretical Mechanics, Technical University of Iasi, 700050, Iasi, Romania, dumitru_vieru@yahoo.com
  • Department of Theoretical Mechanics, Technical University of Iasi, 700050, Iasi, Romania
Bibliografia
  • [1] H. Schlichting, Boundary Layer Theory, Sixth ed. (McGraw Hill, New York, 1968)
  • [2] Y. Zeng, S. Weinbaum, J. Fluid Mech. 287, 59 (1995) http://dx.doi.org/10.1017/S0022112095000851[Crossref]
  • [3] R. Penton, J. Fluid Mech. 31, 819 (1968) http://dx.doi.org/10.1017/S0022112068000509[Crossref]
  • [4] M.E. Erdogan, Int. J. Nonlin. Mech. 35, 1 (2000) http://dx.doi.org/10.1016/S0020-7462(99)00019-0[Crossref]
  • [5] C. Fetecau, D. Vieru, C. Fetecau, Int. J. Nonlin. Mech. 43, 451 (2008) http://dx.doi.org/10.1016/j.ijnonlinmec.2007.12.022[Crossref]
  • [6] M.E. Erdogan, C.E. Imrak, Math. Probl. Eng. Volume 2009, 725196 (2009)
  • [7] K.R. Rajagopal, In: A. Sequira (Ed.), Navier-Stokes Equations and Related Non-Linear Problems (Plenum Press, New York, 1995)
  • [8] I.N. Sneddon, Fourier transforms (McGraw Hill Book Company, Inc., New York, Toronto, London, 1951)
  • [9] I.N. Sneddon, Functional Analysis, Encyclopedia of Physics, vol. II (Springer, Berlin, Göttingen, Heidelberg, 1955)
  • [10] C. Fetecau, C. Fetecau, Int. J. Eng. Sci. 43, 781 (2005) http://dx.doi.org/10.1016/j.ijengsci.2004.12.009[Crossref]
  • [11] H.G. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, Oxford, 1995)
  • [12] D. Vieru, C. Fetecau, A. Sohail, Z. Angew. Math. Phys., DOI:10.1007/s00033-010-0073-4 [Crossref]
  • [13] M. Abramovitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)
  • [14] R. BandellI, K.R. Rajagopal, G.P. Galdi, Arch. Mech. 47, 661 (1995)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0073-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.