Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | 9 | 3 | 662-673
Tytuł artykułu

Analytical solution of equations describing slow axonal transport based on the stop-and-go hypothesis

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analytical solution for slow axonal transport in an axon. The governing equations for slow axonal transport are based on the stop-and-go hypothesis which assumes that organelles alternate between short periods of rapid movement on microtubules (MTs), short on-track pauses, and prolonged off-track pauses, when they temporarily disengage from MTs. The model includes six kinetic states for organelles: two for off-track organelles (anterograde and retrograde), two for running organelles, and two for pausing organelles. An analytical solution is obtained for a steady-state situation. To obtain the analytical solution, the governing equations are uncoupled by using a perturbation method. The solution is validated by comparing it with a high-accuracy numerical solution. Results are presented for neurofilaments (NFs), which are characterized by small diffusivity, and for tubulin oligomers, which are characterized by large diffusivity. The difference in transport modes between these two types of organelles in a short axon is discussed. A comparison between zero-order and first-order approximations makes it possible to obtain a physical insight into the effects of organelle reversals (when organelles change the type of a molecular motor they are attached to, an anterograde versus retrograde motor).
Wydawca

Czasopismo
Rocznik
Tom
9
Numer
3
Strony
662-673
Opis fizyczny
Daty
wydano
2011-06-01
online
2011-02-26
Twórcy
  • Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC, 27695-7910, USA, avkuznet@eos.ncsu.edu
Bibliografia
  • [1] J.E. Duncan, L.S.B. Goldstein, Plos Genet. 2, 1275 (2006) http://dx.doi.org/10.1371/journal.pgen.0020124[Crossref]
  • [2] R.V. Barkus et al., Mol. Biol. Cell 19, 274 (2008) http://dx.doi.org/10.1091/mbc.E07-03-0261[Crossref]
  • [3] L.S.B. Goldstein, Z.H. Yang, Annu. Rev. Neurosci. 23, 39 (2000) http://dx.doi.org/10.1146/annurev.neuro.23.1.39[Crossref]
  • [4] J.V. Shah, D.W. Cleveland, Curr. Opin. Cell Biol. 14, 58 (2002) http://dx.doi.org/10.1016/S0955-0674(01)00294-0[Crossref]
  • [5] S. Roy et al., J. Neurosci. 27, 3131 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4999-06.2007[Crossref]
  • [6] S. Roy et al., J. Neurosci. 20, 6849 (2000)
  • [7] L. Wang et al., Nat. Cell Biol. 2, 137 (2000) http://dx.doi.org/10.1038/35004008[Crossref]
  • [8] C.H. Xia et al., J. Cell Biol. 161, 55 (2003) http://dx.doi.org/10.1083/jcb.200301026[Crossref]
  • [9] A. Brown, L. Wang, P. Jung, Mol. Biol. Cell 16, 4243 (2005) http://dx.doi.org/10.1091/mbc.E05-02-0141[Crossref]
  • [10] -G. Craciun, A. Brown, A. Friedman, J. Theor. Biol. 237, 316 (2005) http://dx.doi.org/10.1016/j.jtbi.2005.04.018[Crossref]
  • [11] -N. Trivedi, P. Jung, A. Brown, J. Neurosci. 27, 507 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4227-06.2007[Crossref]
  • [12] -X.W. Zhu, P.I. Moreira, M.A. Smith, G. Perry, Trends Mol. Med. 11, 391 (2005) http://dx.doi.org/10.1016/j.molmed.2005.07.002[Crossref]
  • [13] -A.V. Kuznetsov, A.A. Avramenko, Math. Biosci. 218, 142 (2009) http://dx.doi.org/10.1016/j.mbs.2009.01.005[Crossref]
  • [14] -J. Motil, M. Dubey, W.K.-H. Chan, T.B. Shea, Brain Res. 1164, 125 (2007) http://dx.doi.org/10.1016/j.brainres.2006.09.108[Crossref]
  • [15] -J.P. Julien, Cell 104, 581 (2001) http://dx.doi.org/10.1016/S0092-8674(01)00244-6[Crossref]
  • [16] -S. Sasaki, H. Warita, K. Abe, M. Iwata, Acta Neuropathol. 110, 48 (2005) http://dx.doi.org/10.1007/s00401-005-1021-9[Crossref]
  • [17] -B.P. Graham, K. Lauchlan, D.R. Mclean, J. Comput. Neurosci. 20, 43 (2006) http://dx.doi.org/10.1007/s10827-006-5330-3[Crossref]
  • [18] -D.R. McLean, B.P. Graham, P. Roy. Soc. Lond. A Mat. 460, 2437 (2004) http://dx.doi.org/10.1098/rspa.2004.1288[Crossref]
  • [19] -A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Commun. Heat Mass 36, 293 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.01.005[Crossref]
  • [20] -A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Com mun. Heat Mass 36, 641 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.04.002[Crossref]
  • [21] -A.V. Kuznetsov, Int. Commun. Heat Mass 35, 881 (2008) http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.04.013[Crossref]
  • [22] -A.V. Kuznetsov, A.A. Avramenko, P. Roy. Soc. A-Math. Phy. 464, 2867 (2008) http://dx.doi.org/10.1098/rspa.2008.0127[Crossref]
  • [23] -A.V. Kuznetsov, Cent. Eur. J. Phys., DOI: 10.2478/s11534-010-0032-x [Crossref]
  • [24] -P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009) http://dx.doi.org/10.1088/1478-3975/6/4/046002[Crossref]
  • [25] -K.E. Miller, S.R. Heidemann, Exp. Cell Res. 314, 1981 (2008) http://dx.doi.org/10.1016/j.yexcr.2008.03.004[Crossref]
  • [26] -M.V. Rao et al., J. Cell Biol. 159, 279 (2002) http://dx.doi.org/10.1083/jcb.200205062[Crossref]
  • [27] -A. Friedman, B. Hu, Arch. Ration. Mech. An. 186, 251 (2007) http://dx.doi.org/10.1007/s00205-007-0069-1[Crossref]
  • [28] -G.T. Shubeita et al., Cell 135, 1098 (2008) http://dx.doi.org/10.1016/j.cell.2008.10.021[Crossref]
  • [29] -J.A. Galbraith, T.S. Reese, M.L. Schlief, P.E. Gallant, P. Natl. Acad. Sci. USA 96, 11589 (1999) http://dx.doi.org/10.1073/pnas.96.20.11589[Crossref]
  • [30] -D.A. Smith, R.M. Simmons, Biophys. J. 80, 45 (2001) http://dx.doi.org/10.1016/S0006-3495(01)75994-2[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0066-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.