PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | 9 | 3 | 716-721
Tytuł artykułu

A DFT study on the interaction between europium, uranium and SWCNT

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the electronic and band structure for the (8; 0) single-wall carbon nanotube (SWCNT) with a europium (Eu) and a uranium (U) atom outside by using the first-principles method with the density functional theory (DFT). The calculated band structure (BS), total density of state (TDOS), and projected density of state (PDOS) can elucidate the differences between the pure (8; 0) SWCNT and the nuclei outside the SWCNT. The indirect band gaps are obtained when Eu and U atom are put outside the (8; 0) CNT; they are 0.037 eV and 0.036 eV, respectively, which is much smaller than 0.851 eV for pure CNT. Compared with pure (8; 0) SWCNT, the bottom of the conduction band moves down by 0.383 eV and 0.451 eV with the Eu and U outside, and the top of valence band moves up by 0.127 eV and 0.162 eV, respectively. More significantly, the top of the valence band has exceeded the fermi-level. So, a single nucleus changes the semiconductor character of pure nanotube to semi-metal.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
9
Numer
3
Strony
716-721
Opis fizyczny
Daty
wydano
2011-06-01
online
2011-02-26
Twórcy
autor
  • School of Physical Science and Technology, Sichuan University, Chengdu, 610065, China
  • Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
autor
  • School of Physical Science and Technology, Sichuan University, Chengdu, 610065, China, hongzhang@scu.edu.cn
Bibliografia
  • [1] S. Iijima, Nature (London) 354, 56 (1991) http://dx.doi.org/10.1038/354056a0[Crossref]
  • [2] X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Appl. Phys. Lett. 78, 3714 (2001) http://dx.doi.org/10.1063/1.1377627[Crossref]
  • [3] B. Gao et al., Chem. Phys. Lett. 307, 153 (1999) http://dx.doi.org/10.1016/S0009-2614(99)00486-8[Crossref]
  • [4] A. Saito, S. Uemur, Carbon 38, 169 (2000) http://dx.doi.org/10.1016/S0008-6223(99)00139-6[Crossref]
  • [5] C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Phys. Rev. Lett. 92, 077402–1 (2004) http://dx.doi.org/10.1103/PhysRevLett.92.077402
  • [6] T.W. Odom, J.L. Huang, P. Kimand, C.M. Lieber, Nature 391, 62 (1998) http://dx.doi.org/10.1038/34145[Crossref]
  • [7] P.L. McEuen, M.S. Fuhrer, H. Park, IEEE Trans. Nanotechnol. 1, 78 (2002) http://dx.doi.org/10.1109/TNANO.2002.1005429[Crossref]
  • [8] K. Uchida, S. Okada, Phys. Rev. B 79, 085402 (2009) http://dx.doi.org/10.1103/PhysRevB.79.085402[Crossref]
  • [9] S.J. Tans et al., Nature 386, 474 (1997) http://dx.doi.org/10.1038/386474a0[Crossref]
  • [10] M. Pumera, M. Cabala, K. Veltruská, I. Ichinose, J. Tang, Chem. Mater. 19, 6513 (2007) http://dx.doi.org/10.1021/cm702330a[Crossref]
  • [11] T. Liang, W.X. Li, H. Zhang, J. Mol. Struc.-Theochem 905, 44 (2009) http://dx.doi.org/10.1016/j.theochem.2009.03.007[Crossref]
  • [12] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998) http://dx.doi.org/10.1063/1.122477[Crossref]
  • [13] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002) http://dx.doi.org/10.1126/science.1060928[Crossref]
  • [14] H.C. Dam et al., Phys. Rev. B 79, 115426 (2009) http://dx.doi.org/10.1103/PhysRevB.79.115426[Crossref]
  • [15] C. Cao et al., Phys. Rev. B 79, 075127 (2009) http://dx.doi.org/10.1103/PhysRevB.79.075127[Crossref]
  • [16] Y.L. Mao, X.H. Yan, Y. Xiao, Nanotechnology 16, 3092 (2005) http://dx.doi.org/10.1088/0957-4484/16/12/061[Crossref]
  • [17] Y. Andres, H.J. MacCordick, J.C. Hubert, Appl. Microbiol. Biot. 39, 413 (1993) http://dx.doi.org/10.1007/BF00192103[Crossref]
  • [18] C.L. Chen, X.K. Wang, M. Nagatsu, Environ. Sci. Technol. 43, 2362 (2009) http://dx.doi.org/10.1021/es803018a[Crossref]
  • [19] C.L. Chen et al., J. Colloid Interf. Sci. 323, 33 (2008) http://dx.doi.org/10.1016/j.jcis.2008.04.046[Crossref]
  • [20] H. Cho, B.A. Smith, J.D. Wnuk, D.H. Fairbrother, W.P. Ball, Environ. Sci. Technol. 42, 2899 (2008) http://dx.doi.org/10.1021/es702363e[Crossref]
  • [21] X.K. Wang et al., Environ. Sci. Technol. 39, 7084 (2005) http://dx.doi.org/10.1021/es0506307[Crossref]
  • [22] M.D. Segall et al., J. Phys.: Condens. Matter 14, 2717 (2002) http://dx.doi.org/10.1088/0953-8984/14/11/301[Crossref]
  • [23] S.J. Clark et al., Z. Kristallogr. 220, 567 (2005) http://dx.doi.org/10.1524/zkri.220.5.567.65075[Crossref]
  • [24] E. Engel, S. Keller, R.M. Dreizler, Phys. Rev. A 53, 1367 (1996) http://dx.doi.org/10.1103/PhysRevA.53.1367[Crossref]
  • [25] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 28, 3865 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.3865[Crossref]
  • [26] A. Matveev, M. Staufer, M. Mayer, N. Rosch, Int. J. Quantum Chem. 75, 863 (1999) http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<863::AID-QUA51>3.0.CO;2-T[Crossref]
  • [27] H.J. Monkhorst, J.D. Park, Phys. Rev. B 13, 5188 (1976) http://dx.doi.org/10.1103/PhysRevB.13.5188[Crossref]
  • [28] M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989) http://dx.doi.org/10.1103/PhysRevB.40.3616[Crossref]
  • [29] S. Peng, K. Cho, Nano Lett. 3, 513 (2003) http://dx.doi.org/10.1021/nl034064u[Crossref]
  • [30] G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996) http://dx.doi.org/10.1016/0927-0256(96)00008-0[Crossref]
  • [31] W.H. Xie, Y.Q. Xu, B.G. Liu, Phys. Rev. Lett. 18, 037204 (2003) http://dx.doi.org/10.1103/PhysRevLett.91.037204[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0052-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.