PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | 9 | 2 | 319-324
Tytuł artykułu

Atomic layer deposition of HfO2 on graphene from HfCl4 and H2O

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Atomic layer deposition of HfO2 on unmodified graphene from HfCl4 and H2O was investigated. Surface RMS roughness down to 0.5 nm was obtained for amorphous, 30 nm thick hafnia film grown at 180°C. HfO2 was also deposited in a two-step temperature process where the initial growth of about 1 nm at 170°C was continued up to 10–30 nm at 300°C. This process yielded uniform, monoclinic HfO2 films with RMS roughness of 1.7 nm for 10–12 nm thick films and 2.5 nm for 30 nm thick films. Raman spectroscopy studies revealed that the deposition process caused compressive biaxial strain in graphene, whereas no extra defects were generated. An 11 nm thick HfO2 film deposited onto bilayer graphene reduced the electron mobility by less than 10% at the Dirac point and by 30–40% far away from it.
Wydawca

Czasopismo
Rocznik
Tom
9
Numer
2
Strony
319-324
Opis fizyczny
Daty
wydano
2011-04-01
online
2011-02-20
Twórcy
autor
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
autor
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
autor
  • Low Temperature Laboratory, Aalto University, Espoo, P.O. Box 15100, Finland
autor
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
autor
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
autor
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
  • Low Temperature Laboratory, Aalto University, Espoo, P.O. Box 15100, Finland
Bibliografia
  • [1] K.S. Novoselov et al., Science 306, 666 (2004) http://dx.doi.org/10.1126/science.1102896[Crossref]
  • [2] A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) http://dx.doi.org/10.1038/nmat1849[Crossref]
  • [3] K.S. Kim et al., Nature 457, 706 (2009) http://dx.doi.org/10.1038/nature07719[Crossref]
  • [4] A. Reina et al., Nano Lett. 9, 30 (2009) http://dx.doi.org/10.1021/nl801827v[Crossref]
  • [5] X. Li et al., Science 324, 1312 (2009) http://dx.doi.org/10.1126/science.1171245[Crossref]
  • [6] J. Kedzierski et al., IEEE T. Electron Dev. 55, 2078 (2008) http://dx.doi.org/10.1109/TED.2008.926593[Crossref]
  • [7] R.L. Puurunen, J. Appl. Phys. 97, 121301 (2005) http://dx.doi.org/10.1063/1.1940727[Crossref]
  • [8] A. Javey et al., Nano Lett. 4, 1319 (2004) http://dx.doi.org/10.1021/nl049222b[Crossref]
  • [9] D.B. Farmer R.G. Gordon, Nano Lett. 6, 699 (2006) http://dx.doi.org/10.1021/nl052453d[Crossref]
  • [10] J.R. Williams, L. DiCarlo, C.M. Marcus, Science 317, 638 (2007) http://dx.doi.org/10.1126/science.1144657[Crossref]
  • [11] Y.-M. Lin et al., Nano Lett. 9, 422 (2009) http://dx.doi.org/10.1021/nl803316h[Crossref]
  • [12] B. Lee et al., Appl. Phys. Lett. 92, 203102 (2008) http://dx.doi.org/10.1063/1.2928228[Crossref]
  • [13] X. Wang, S.M. Tabakman, H. Dai, J. Am. Chem. Soc. 130, 8152 (2008) http://dx.doi.org/10.1021/ja8023059[Crossref]
  • [14] Y. Xuan et al., Appl. Phys. Lett. 92, 013101 (2008) http://dx.doi.org/10.1063/1.2828338[Crossref]
  • [15] I. Meric et al., Nat. Nanotechnol. 3, 654 (2008) http://dx.doi.org/10.1038/nnano.2008.268[Crossref]
  • [16] G. Scarel et al., Mater. Sci. Eng. B-Solid 109, 11 (2004) http://dx.doi.org/10.1016/j.mseb.2003.10.021[Crossref]
  • [17] K. Kukli et al., J. Appl. Phys. 96, 5298 (2004) http://dx.doi.org/10.1063/1.1796513[Crossref]
  • [18] J. Aarik et al., J. Cryst. Growth 220, 105 (2000) http://dx.doi.org/10.1016/S0022-0248(00)00831-9[Crossref]
  • [19] J. Aarik et al., Appl. Surf. Sci. 252, 5723 (2006) http://dx.doi.org/10.1016/j.apsusc.2005.07.067[Crossref]
  • [20] J. Aarik et al., Thin Solid Films 340, 110 (1999) http://dx.doi.org/10.1016/S0040-6090(98)01356-X[Crossref]
  • [21] J. Aarik et al., Appl. Surf. Sci. 230, 292 (2004) http://dx.doi.org/10.1016/j.apsusc.2004.02.048[Crossref]
  • [22] K. Kukli et al., Thin Solid Films 479, 1 (2005) http://dx.doi.org/10.1016/j.tsf.2004.11.191[Crossref]
  • [23] S.N. Tkachev et al., J. Mater. Sci. 40, 4293 (2005) http://dx.doi.org/10.1007/s10853-005-2826-6[Crossref]
  • [24] C. Casiraghi et al., Appl. Phys. Lett. 91, 233108 (2007) http://dx.doi.org/10.1063/1.2818692[Crossref]
  • [25] A. Das et al., Nat. Nanotechnol. 3, 210 (2008) http://dx.doi.org/10.1038/nnano.2008.67[Crossref]
  • [26] Z. Ni et al., Nano Res. 1, 273 (2008) http://dx.doi.org/10.1007/s12274-008-8036-1[Crossref]
  • [27] T.M.G. Mohiuddin et al., Phys. Rev. B 79, 205433 (2009) http://dx.doi.org/10.1103/PhysRevB.79.205433[Crossref]
  • [28] W. Bao et al., Nat. Nanotechnol. 4, 562 (2009) http://dx.doi.org/10.1038/nnano.2009.191[Crossref]
  • [29] J. Wang, H.P. Li, R. Stevens, J. Mater. Sci. 27, 5397 (1992) http://dx.doi.org/10.1007/BF00541601[Crossref]
  • [30] S.V. Morozov et al., Phys. Rev. Lett. 100, 016602 (2008) http://dx.doi.org/10.1103/PhysRevLett.100.016602[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0040-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.