Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2010 | 8 | 6 | 873-882
Tytuł artykułu

Jet spaces in modern Hamiltonian biomechanics

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we propose the time-dependent Hamiltonian form of human biomechanics, as a sequel to our previous work in time-dependent Lagrangian biomechanics [1]. This is the time-dependent generalization of an ‘ordinary’ autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. In our view, this time-dependent energetic approach is much more realistic than the autonomous one. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics. Then we extend it using a powerful geometrical machinery consisting of fibre bundles and jet manifolds associated to the biomechanical configuration manifold. We derive time-dependent, dissipative, Hamiltonian equations and the fitness evolution equation for the general time-dependent human biomechanical system.
Wydawca

Czasopismo
Rocznik
Tom
8
Numer
6
Strony
873-882
Opis fizyczny
Daty
wydano
2010-12-01
online
2010-09-05
Twórcy
  • Sports Academy, Belgrade, Serbia
  • Faculty of Sport and Physical Education, University of Nis, Nis, Serbia
  • Faculty of Sport and Physical Education, University of Nis, Nis, Serbia
Bibliografia
  • [1] T. Ivancevic, Cent. Eur. J. Phys., DOI:10.2478/s11534-009-0148-z [Crossref]
  • [2] V. Ivancevic, T. Ivancevic, Human˛ Like Biomechanics: A Unified Mathematical Approach to Human Biomechanics and Humanoid Robotics (Springer, Dordrecht, 2006)
  • [3] V. Ivancevic, T. Ivancevic, Natural Biodynamics (World Scientific, Singapore 2006)
  • [4] V. Ivancevic, T. Ivancevic, Geometrical Dynamics of Complex Systems: A Unified Modelling Approach to Physics, Control, Biomechanics, Neurodynamics and Psycho-Socio-Economical Dynamics (Springer, Dordrecht, 2006)
  • [5] V. Ivancevic, T. Ivancevic, Applied Differential Geometry: A Modern Introduction (World Scientific, Singapore, 2007) http://dx.doi.org/10.1142/9789812770721[Crossref]
  • [6] V. Ivancevic, T. Ivancevic, High˛ Dimensional Chaotic and Attractor Systems (Springer, Berlin, 2006)
  • [7] V. Ivancevic, T. Ivancevic, Int. J. Hum. Robot. 5, 699 (2008) http://dx.doi.org/10.1142/S0219843608001595[Crossref]
  • [8] V. Ivancevic, T. Ivancevic, Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals (Springer, Berlin, 2008)
  • [9] T. Ivancevic, B. Jovanovic, M. Djukic, S. Markovic, N. Djukic, Journal of Facta Universitatis U Series: Sport 6, 51 (2008)
  • [10] T. Ivancevic, L. Jain, J. Pattison, A. Hariz, Nonlinear Dynam. 56, 23, (2009) http://dx.doi.org/10.1007/s11071-008-9376-9[Crossref]
  • [11] T. Ivancevic, B. Jovanovic, S. Djukic, M. Djukic, S. Markovic, Complex Sports Biodynamics: With Practical Applications in Tennis (Springer, Berlin, 2009)
  • [12] H. Hatze, Biol. Cybern. 28, 143 (1978) http://dx.doi.org/10.1007/BF00337136[Crossref]
  • [13] D. R. Wilkie, Brit. Med. Bull. 12, 177 (1956)
  • [14] A. V. Hill, Proc. Roy. Soc. B-Biol. Sci. 76, 136 (1938) http://dx.doi.org/10.1098/rspb.1938.0050[Crossref]
  • [15] G. Giachetta, L. Mangiarotti, G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory (World Scientific, Singapore, 1997)
  • [16] G. Sardanashvily, J. Math. Phys. 39, 2714 (1998) http://dx.doi.org/10.1063/1.532416[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0024-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.