Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 8 | 1 | 33-41
Tytuł artykułu

Spatially extended populations reproducing logistic map

Treść / Zawartość
Warianty tytułu
Języki publikacji
We discuss here the conditions that the spatially extended systems (SES) must satisfy to reproduce the logistic map. To address this dilemma we define a 2-D coupled map lattice with a local rule mimicking the logistic formula. We show that for growth rates of k⩽k ∞ (k ∞ is the accumulation point) the global evolution of the system exactly reproduces the cascade of period doubling bifurcations. However, for k > k ∞, instead of chaotic modes, the cascade of period halving bifurcations is observed. Consequently, the microscopic states at the lattice nodes resynchronize producing dynamically changing spatial patterns. By downscaling the system and assuming intense mobility of individuals over the lattice, the spatial correlations can be destroyed and the local rule remains the only factor deciding the evolution of the whole colony. We found the class of “atomistic” rules for which uncorrelated spatially extended population matches the logistic map both for pre-chaotic and chaotic modes. We concluded that the global logistic behavior can be expected for a spatially extended colony with high mobility of individuals whose microscopic behavior is governed by a specific semi-logistic rule in the closest neighborhood. Conversely, the populations forming dynamically changing spatial clusters behave in a different way than the logistic model and reproduce at least the steady-state fragment of the logistic map.

Opis fizyczny
  • Institute of Comuter Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland,
  • [1] K. Kaneko, I. Tsuda, Complex Systems: Chaos and beyond (Springer Verlag, Berlin, 2001) 273
  • [2] B. E. Kendall, Theor. Popul. Biol. 54, 11 (1998)[Crossref]
  • [3] A. L. Lloyd, J. Theor. Biol. 173, 217 (1995)[Crossref]
  • [4] R. Law, D. J. Murrell, U. Dieckmann, Ecology 84, 252 (2003)[0252:PGISAT]2.0.CO;2[Crossref]
  • [5] A. Bejan, Shape and Structure, from Engineering to Nature (Cambridge University Press, 2000) 324
  • [6] E. Ben-Jacob, I. Cohen, H. Levine, Adv. Phys. 49, 395 (2000)[Crossref]
  • [7] I. Cohen, I. Golding, Y. Kozlovsky, E. Ben-Jacob, Fractals 7, 235 (1999)[Crossref]
  • [8] E. E. Holmes, M. A. Lewis, J. E. Banks, R. R. Veit, Ecology 75, 17 (1994)[Crossref]
  • [9] B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge University Press, Cambridge, 1998) 341
  • [10] S. A. Wolfram, New Kind of Science (Wolfram Media Incorporated, 2002) 1263
  • [11] Yang Xin-She, Y. Young, In: S. Olariu, A. Y. Zomaya (Eds.), Handbook of Bioinspired Algorithms and Applications (Chapman & Hall/CRC, Boca Raton, London, New York, 2006) 273
  • [12] W. Dzwinel, D.A. Yuen, Int. J. Mod. Phys. C 16, 357 (2005)[Crossref]
  • [13] K. Krawczyk, W. Dzwinel, D.A. Yuen, Int. J. Mod. Phys. C 14, 1385 (2003)[Crossref]
  • [14] V. Grimm, S. F. Railsback, Individual-Based Modelling and Ecology (Princeton University Press: Princeton, NJ, 2005) 480
  • [15] D. J. Murrell, U. Dieckmann, R. Law, J. Theor. Biol. 229, 421 (2004)[Crossref]
  • [16] S. P. Ellner, J. Theor. Biol. 210, 435 (2001)[Crossref]
  • [17] A. G. Schuster, Deterministic chaos, Polish edition (Wydawnictwo Naukowe PWN, Warszawa, 1993) 274
  • [18] P. J. S. Franks, Limnol. Oceanogr. 42, 2997 (1997)
  • [19] P. Topa. W. Dzwinel, D. A. Yuen, Int. J. Mod. Phys. C 17, 1437, (2006)[Crossref]
  • [20] H. R. Thompson, Ecology 37, 391 (1956)[Crossref]
  • [21] K. Kaneko, Physica D 34, 1 (1989)[Crossref]
  • [22] G. Pizarro, D. Griffeath, D. R. Noguera, Journal of Environmental Engineering 127, 782 (2001)[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.