Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 7 | 3 | 503-508
Tytuł artykułu

Can Ising model and/or QKPZ equation properly describe reactive-wetting interface dynamics?

Treść / Zawartość
Warianty tytułu
Języki publikacji
The reactive-wetting process, e.g. spreading of a liquid droplet on a reactive substrate is known as a complex, non-linear process with high sensitivity to minor fluctuations. The dynamics and geometry of the interface (triple line) between the materials is supposed to shed light on the main mechanisms of the process. We recently studied a room temperature reactive-wetting system of a small (∼ 150 μm) Hg droplet that spreads on a thin (∼ 4000 Å) Ag substrate. We calculated the kinetic roughening exponents (growth and roughness), as well as the persistence exponent of points on the advancing interface. In this paper we address the question whether there exists a well-defined model to describe the interface dynamics of this system, by performing two sets of numerical simulations. The first one is a simulation of an interface propagating according to the QKPZ equation, and the second one is a landscape of an Ising chain with ferromagnetic interactions in zero temperature. We show that none of these models gives a full description of the dynamics of the experimental reactivewetting system, but each one of them has certain common growth properties with it. We conjecture that this results from a microscopic behavior different from the macroscopic one. The microscopic mechanism, reflected by the persistence exponent, resembles the Ising behavior, while in the macroscopic scale, exemplified by the growth exponent, the dynamics looks more like the QKPZ dynamics.

Opis fizyczny
  • Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel,
  • Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
  • [1] A. Be’er, Y. Lereah, A. Frydman, H. Taitelbaum, Phys. Rev. E 75, 051601 (2007)[Crossref]
  • [2] A. Be’er, Y. Lereah, H. Taitelbaum, Mater. Sci. Eng. A 495, 102 (2008)[Crossref]
  • [3] L. Yin, A. Chauhan, T. J. Singler, Mater. Sci. Eng. A 495, 80 (2008)[Crossref]
  • [4] A. Be’er, Y. Lereah, H. Taitelbaum, Physica A, 285, 156 (2000)[Crossref]
  • [5] A. Be’er, Y. Lereah, I. Hecht, H. Taitelbaum, Physica A 302, 297 (2001)[Crossref]
  • [6] A. Be’er, Y. Lereah, A. Frydman, H. Taitelbaum, Physica A 314, 325 (2002)[Crossref]
  • [7] I. Hecht, A. Be’er, H. Taitelbaum, Fluct. Noise Lett. 5, 319 (2005)[Crossref]
  • [8] A. Be’er, I. Hecht, H. Taitelbaum, Phys. Rev. E 72, 031606 (2005)[Crossref]
  • [9] A. L. Barabasi, H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)[Crossref]
  • [10] Y. Efraim, H. Taitelbaum, Phys. Rev. E (in press)
  • [11] B. Derrida, A. J. Bray, C. Godreche, J. Stat. Mech.-Theory E, P07011 (1994)
  • [12] B. Derrida, V. Hakim, V. Pasquier, Phys. Rev. Lett. 75, 751 (1995)[Crossref]
  • [13] J. Krug et al., Phys. Rev. E 56, 2702 (1997)[Crossref]
  • [14] M. Constantin, C. Dasgupta, S. Das Sarma, D. B. Dougherty, E. D. Williams, J. Stat. Mech.-Theory E. 07011 (2007)
  • [15] J. Merikoski, J. Maunuksela, M. Myllys, J. Timonen, Phys. Rev. Lett. 90, 024501 (2003)[Crossref]
  • [16] Z. Csahok, K. Honda, T. Vicsek, J. Phys. A 26, L171 (1993)[Crossref]
  • [17] H. Kallabis, J. Krug, Europhys. Lett. 45, 20 (1999)[Crossref]
  • [18] L. Ponson, D. Bonamy, E. Bouchaud, Phys. Rev. Lett. 96, 035506 (2006)[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.