Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 6 | 4 | 797-801
Tytuł artykułu

Electron irradiation effects in doped high temperature superconductors YBa2Cu3−x MxOy (M = Fe, Ni; x=0; x=0:01)

Treść / Zawartość
Warianty tytułu
Języki publikacji
The influence of irradiation by electrons with an energy of 8 MeV, at dose intervals between 1013 and 2×1018el/cm2, on the properties of impurity doped, high-temperature superconductor YBa2Cu3−x MxOy (M = Fe, Ni; x=0; x=0:01) ceramics has been studied. It has been established that, as the irradiation dose is increased, the onset temperature of the transition to the superconducting state (T con), and the intergranular weak link coupling temperature between granules (T mJ), exhibit an oscillation around their initial values of approximately about 1–1.5 K. This oscillation indicates that the process of radiation defect formation in HTSC occurs in multiple stages. It was also found that the critical current (J c)decreases with an increase of the irradiation dose, and exhibits a local minimum at a dose of 8×1016el/cm2coinciding with minima for T con and T mJ at this dose. It was found that the introduction of Fe atoms to the ceramic decreases T mJ, while introducing Ni atoms decreases both T con and T mJ; it is suggested that this is a result of Ni substitution of Cu both in Cu2 plane sites and Cu1 chain sites. The introduction of Ni causes a large change in the intergranular critical current density, J c. A critical irradiation dose is obtained (2×1018)after which all HTSC parameters strongly decrease, i. e. the superconductivity of HTSC is destroyed.

Opis fizyczny
  • Yerevan Physics Institute, 2, Alikhanian Bros. str., Yerevan, 3750036, Armenia
  • Yerevan Physics Institute, 2, Alikhanian Bros. str., Yerevan, 3750036, Armenia
  • Yerevan Physics Institute, 2, Alikhanian Bros. str., Yerevan, 3750036, Armenia,
  • [1] H. Kumakura et al., J. Appl. Phys. 74, 451 (1993)[Crossref]
  • [2] D.J. Clark et al., Nucl. Instrum. Meth. B 32, 405 (1988)[Crossref]
  • [3] X. Zhao et al., Physica C 337, 234 (2000)[Crossref]
  • [4] B.I. Belevtsev et al., Phys. Status Solidi A 181, 437 (2000)<437::AID-PSSA437>3.0.CO;2-L[Crossref]
  • [5] A.A. Nikonov, G.V. Sotnikov, A.S. Tokarev, Superconductivity: Physics, Chemistry, Technique (SPCT) 2, 40 (1989)
  • [6] P. Sen et al., Physica C 303, 108 (1998)[Crossref]
  • [7] F.M. Sauerzopf, Phys. Rev. B 57, 10959 (1998)[Crossref]
  • [8] P.H. Hor et al., Physica C 185–189, 2311 (1991)[Crossref]
  • [9] G.N. Eritsyan et al., Superconductivity: Physics, Chemistry, Technique (SPCT) 6, 1446 (1993)
  • [10] S.K. Nikogosian, A.A. Sahakian, G.N. Yeritsian, A.G. Sarkisian, K.G. Begoian, Solid State Commun. 96, 707 (1995)[Crossref]
  • [11] S.K. Nikoghosyan et al., Phys. Status Solidi A 178, 765 (2000)<765::AID-PSSA765>3.0.CO;2-0[Crossref]
  • [12] Yu. V. Fedotov, S.M. Ryabchenko, A.P. Shakhov, Low Temp. Phys+ 26, 464 (2000)[Crossref]
  • [13] E.M. Jackson, B.D. Weaver, G.P. Summers, P. Shapiro, E.A. Burke, Phys. Rev. Lett. 74, 3033 (1995)[Crossref]
  • [14] L.A. Openov, Comments, Phys. Rev. Lett. 93, 129701 (2004)[Crossref]
  • [15] S.K. Nikoghosyan, A.A. Sahakyan, G.N. Yeritsyan, Physica C 299, 65 (1998)[Crossref]
  • [16] Z. Koziol, Physica C 159, 281 (1989)[Crossref]
  • [17] M. Tarascon et al., Phys. Rev. B 37, 7458 (1988)[Crossref]
  • [18] V.S. Boyko, J. Malinsky, N. Abdellatif, V. V. Boyko, Phys. Lett. A 561 (1998)
  • [19] S.J. Rothman, J.L. Routbort, U. Welp, J.E. Baker, Phys. Rev. B 44, 2326 (1991)[Crossref]
  • [20] K. Noto et al., Jpn. J. Appl. Phys. 26, 1195 (1987)[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.