Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 6 | 3 | 662-670
Tytuł artykułu

An action for a classical string, the equation of motion and group invariant classical solutions

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A string action which is essentially a Willmore functional is presented and studied. This action determines the physics of a surface in Euclidean three space which can be used to model classical string configurations. By varying this action an equation of motion for the mean curvature of the surface is obtained which is shown to govern certain classical string configurations. Several classes of classical solutions for this equation are discussed from the symmetry group point of view and an application is presented.
Wydawca

Czasopismo
Rocznik
Tom
6
Numer
3
Strony
662-670
Opis fizyczny
Daty
wydano
2008-09-01
online
2008-07-17
Twórcy
autor
  • Department of Mathematics, University of Texas, Edinburg, TX, 78539, USA, bracken@panam.edu
Bibliografia
  • [1] B. Konopelchenko, I. Taimanov, J. Phys. A 29, 1261 (1986) http://dx.doi.org/10.1088/0305-4470/29/6/012[Crossref]
  • [2] D.G. Gross, C.N. Pope, S. Weinberg, Two-dimensional Quantum Gravity and Random Surfaces (World Scientific, Singapore, 1992)
  • [3] K.S. Viswanathan, R. Parthasarathy, Phys. Rev. D 55, 3800 (1997) http://dx.doi.org/10.1103/PhysRevD.55.3800[Crossref]
  • [4] P. Bracken, Phys. Lett. B 541, 166 (2002) http://dx.doi.org/10.1016/S0370-2693(02)02191-3[Crossref]
  • [5] A.M. Poyakov, Nucl. Phys. B 268, 406 (1986) http://dx.doi.org/10.1016/0550-3213(86)90162-8[Crossref]
  • [6] H. Kleinert, Phys. Lett. B 174, 335 (1986) http://dx.doi.org/10.1016/0370-2693(86)91111-1[Crossref]
  • [7] P. Bracken, A.M. Grundland, L. Martina, J. Math. Phys. 40, 3379 (1999) http://dx.doi.org/10.1063/1.532894[Crossref]
  • [8] S.N. Behera, A. Khare, Pramana 15, 245 (1980) http://dx.doi.org/10.1007/BF02847222[Crossref]
  • [9] R. Jackiw, Rev. Mod. Phys. 49, 681 (1977) http://dx.doi.org/10.1103/RevModPhys.49.681[Crossref]
  • [10] R.M. White, T.H. Geballe, Long Range Order in Solids (Academic, New York, 1979)
  • [11] B.G. Konopelchenko, Phys. Lett. B 459, 522 (1999) http://dx.doi.org/10.1016/S0370-2693(99)00699-1[Crossref]
  • [12] P.J. Olver, Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics, Springer, New York, 1993), vol 107
  • [13] E.L. Ince, Ordinary Differential Equations (Dover, New York, 1956)
  • [14] P. Winternitz, A.M. Grundland, J.A. Tuszynski, J. Phys. C 21, 4931 (1988) http://dx.doi.org/10.1088/0022-3719/21/28/008[Crossref]
  • [15] P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1971)
  • [16] P. Bracken, Acta Appl. Math. 92, 63 (2006) http://dx.doi.org/10.1007/s10440-006-9059-9[Crossref]
  • [17] P. Bracken, A.M. Grundland, Czech. J. Phys. 51, 293 (2001) http://dx.doi.org/10.1023/A:1017529203946[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0092-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.