PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 6 | 2 | 363-371
Tytuł artykułu

The uncertainty relation expressed by means of a new entropic function

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article we use a new entropic function, derived from an f-divergence between two probability distributions, for the construction of an alternative entropic uncertainty relation. After a brief review of some existing f-divergences, a new f-divergence and the corresponding entropic function, derived from it, is introduced and its useful characteristics are presented. This entropic function is then applied to construct an alternative uncertainty relation of two non-commuting observables in quantum physics. An explicit expression for such an uncertainty relation is found for the case of two observables which are the x- and z-components of the angular momentum of the spin-1/2 system.
Wydawca

Czasopismo
Rocznik
Tom
6
Numer
2
Strony
363-371
Opis fizyczny
Daty
wydano
2008-06-01
online
2008-03-26
Twórcy
  • Institute of Mathematics, Slovak Academy of Sciences, SK-814 73, Bratislava, Štefánikova 49, Slovak Republic, fyziemar@savba.sk
Bibliografia
  • [1] V. Majerník, E. Majerníková, S. Shpyrko, Cent. Eur. J. Phys. 3, 393 (2003) http://dx.doi.org/10.2478/BF02475852[Crossref]
  • [2] I. Vajda, Theory of Statistical Inference and Information (Kluwer Academic Publishers, Dortrecht, 1996)
  • [3] I. Csiszár, Publ. Math. Inst. Hungar. Acad. Sci. 8, 85 (1963)
  • [4] S. Kullback, R.A. Leibler, Annals Mathematical Statistics 22, 79 (1951) http://dx.doi.org/10.1214/aoms/1177729694[Crossref]
  • [5] Z. Daróczy, MTA III. Osztály Közleménzyei, 19, 11 (1969) (in Hungarian)
  • [6] J. Aczcél, Z. Daróczy, On measures of information and their characterizations (New York, Academic Press, 1972)
  • [7] F. Österreicher, Ciszár’s f-divergences-Basic Properties, Preprint of Institute of Mathematics of University of Saltzburg (2002)
  • [8] A. Rényi, On the Measures of Entropy and Information, In: 4th Berkeley Symp. Math. Stat. Probability 1, 541 (1961)
  • [9] A. Bhattacharyya, Sankhya 8, 1 (1946)
  • [10] H. Chernoff, An. Math. Stat. 30, 493 (1952) http://dx.doi.org/10.1214/aoms/1177729330[Crossref]
  • [11] W. Finkel, Phys. Rev. A 35, 1488 (1987) http://dx.doi.org/10.1103/PhysRevA.35.1486[Crossref]
  • [12] V. Majerník, L. Richterek, Eur. J. Phys. 18, 73 (1997) http://dx.doi.org/10.1088/0143-0807/18/2/005[Crossref]
  • [13] B. Mamojka, Int. J. Theor. Phys. 11, 73 (1974) http://dx.doi.org/10.1007/BF01811035[Crossref]
  • [14] M. Portesi, A. Plastino, Physica A 225, 411 (1996) http://dx.doi.org/10.1016/0378-4371(95)00475-0[Crossref]
  • [15] V. Majerník, Int. J. Gen. Syst. 33, 673 (2004) http://dx.doi.org/10.1080/03081070410001723139[Crossref]
  • [16] J. Havrda, F. Charvat, Kybernetika 3, 30 (1967)
  • [17] D. Morales, L. Padro, I. Vajda, IEEE Trans. on Syst., Man, and Cyber, Part A: Systems and Humans 26, 681 (2006) http://dx.doi.org/10.1109/3468.541329[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0057-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.