Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 6 | 3 | 711-716
Tytuł artykułu

Mechanical model of the Lorentz force and Coulomb interaction

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The centripetal and Coriolis accelerations experienced by a cart traveling over a rotating turntable are usually calculated proceeding from the known kinematics of the problem. Respective forces can be regarded as due to the entrainment of the cart in the moving solid environs. We extend the approach to the general case of a particle entrained in the flow of the surrounding medium. The expression for the driving force on the particle obtained from the kinematics of the entrainment prescribed appears to be isomorphic to the Lorentz and Coulomb force on a positive electric charge. The inverse direction of the electromagnetic force on a negative charge implies that a growing applied flow induces the upstream motion of the particle. A possible microscopic mechanism for it may be the Magnus force dynamics of a kink in a vortex tangle. The loop on a straight vortex filament can be taken as a model of the electron, the loop with a cavitation models the positron. The Lorentz force is concerned with the Coriolis acceleration. The Coulomb interaction is due to the centripetal or centrifugal force that arises in the turbophoresis of the kink in the perturbation field generated in the medium by the center of pressure.
Wydawca

Czasopismo
Rocznik
Tom
6
Numer
3
Strony
711-716
Opis fizyczny
Daty
wydano
2008-09-01
online
2008-07-17
Twórcy
Bibliografia
  • [1] H. Goldstein, Classical mechanics, 1st ed. (Addison-Wesley, Cambridge, MA, 1950)
  • [2] V.P. Dmitriyev, Meccanica 42, 283 (2007) http://dx.doi.org/10.1007/s11012-007-9053-y[Crossref]
  • [3] E.R. Huggins, Phys. Rev. A 1, 327 (1970) http://dx.doi.org/10.1103/PhysRevA.1.327[Crossref]
  • [4] A.H. M. Eisenga, R. Verzicco, G.J.F. van Heijst, J. Fluid Mech. 354, 215 (1998) http://dx.doi.org/10.1017/S0022112097007702[Crossref]
  • [5] K. Shariff, A. Leonard, Annu. Rev. Fluid Mech. 24, 235 (1992) http://dx.doi.org/10.1146/annurev.fl.24.010192.001315[Crossref]
  • [6] V.P. Dmitriyev, J. Appl. Math. 2, 241 (2002) http://dx.doi.org/10.1155/S1110757X02110199[Crossref]
  • [7] V.P. Dmitriyev, Am. J. Phys. 73, 563 (2005) http://dx.doi.org/10.1119/1.1873892[Crossref]
  • [8] V.P. Dmitriyev, Z. Naturforsch. A 48, 935 (1993)
  • [9] K.W. Shwarz, Phys. Rev. B 38, 2398 (1988) http://dx.doi.org/10.1103/PhysRevB.38.2398[Crossref]
  • [10] E.M. Kelly, Nuov. Cim. B 32, 117 (1976) http://dx.doi.org/10.1007/BF02726748[Crossref]
  • [11] M.W. Reeks, J. Aerosol Science 310, 729 (1983) http://dx.doi.org/10.1016/0021-8502(83)90055-1[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0052-y
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.