PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 6 | 3 | 671-684
Tytuł artykułu

The symmetry group of the quantum harmonic oscillator in an electric field

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present two results. First, we derive the most general group of infinitesimal transformations for the Schrödinger Equation of the general time-dependent Harmonic Oscillator in an electric field. The infinitesimal generators and the commutation rules of this group are presented and the group structure is identified. From here it is easy to construct a set of unitary operators that transform the general Hamiltonian to a much simpler form. The relationship between squeezing and dynamical symmetries is also stressed. The second result concerns the application of these group transformations to obtain solutions of the Schrödinger equation in a time-dependent potential. These solutions are believed to be useful for describing particles confined in boxes with moving boundaries. The motion of the walls is indeed governed by the time-dependent frequency function. The applications of these results to non-rigid quantum dots and tunnelling through fluctuating barriers is also discussed, both in the presence and in the absence of a time-dependent electric field. The differences and similarities between both cases are pointed out.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
6
Numer
3
Strony
671-684
Opis fizyczny
Daty
wydano
2008-09-01
online
2008-07-17
Twórcy
  • Física Teórica, Facultad de Ciencias, Universidad de Salamanca, 37008, Salamanca, Spain
  • Física Teórica, Facultad de Ciencias, Universidad de Salamanca, 37008, Salamanca, Spain
Bibliografia
  • [1] E. Fermi, Phys. Rev. 75, 1169 (1949) http://dx.doi.org/10.1103/PhysRev.75.1169[Crossref]
  • [2] S.M. Ulam, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley Ed., 1961)
  • [3] G.M. Zallarskij, B.V. Chirikov, Dokl. Akad. Nauk. SSSR 159, 306 (1964)
  • [4] M.A. Lieberman, A.W.J. Lichtenberg, Phys. Rev. A 5, 1852 (1972) http://dx.doi.org/10.1103/PhysRevA.5.1852[Crossref]
  • [5] P. Seba, Phys. Rev. A 41, 2306 (1990) http://dx.doi.org/10.1103/PhysRevA.41.2306[Crossref]
  • [6] J.M. Cerveró, J.D. Lejarreta, Europhys. Lett. 45, 6 (1999) http://dx.doi.org/10.1209/epl/i1999-00123-2[Crossref]
  • [7] J.D. Lejarreta, J. Phys. A 32, 4749 (1999) http://dx.doi.org/10.1088/0305-4470/32/25/314[Crossref]
  • [8] B. Sutherland, Phys. Rev. Lett. 80, 3678 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.3678[Crossref]
  • [9] M. Maamache, J. Math. Phys. 39, 2306 (1998) http://dx.doi.org/10.1063/1.532341[Crossref]
  • [10] D. Leibfried, Rev. Mod. Phys. 75, 281 (2003) http://dx.doi.org/10.1103/RevModPhys.75.281[Crossref]
  • [11] W. Paul, Rev. Mod. Phys. 62, 531 (1990) http://dx.doi.org/10.1103/RevModPhys.62.531[Crossref]
  • [12] S. Chu, C.N. Cohen-Tannoudji, W.D. Philips, Rev. Mod. Phys. 70, 685 (1998) http://dx.doi.org/10.1103/RevModPhys.70.685[Crossref]
  • [13] A.V. Dodonov, E.V. Dodonov, V.V. Dodonov, arXiv: quant-ph/0308144
  • [14] C-C. Lee, C-L. Ho, Phys. Rev. A 65, 022111 (2002) http://dx.doi.org/10.1103/PhysRevA.65.022111[Crossref]
  • [15] J.M. Cerveró, A. Rodríguez, Int. J. Theor. Phys. 41, 503 (2002) http://dx.doi.org/10.1023/A:1014201406034[Crossref]
  • [16] J.M. Cerveró, J.D. Lejarreta J. Phys. A 29, 7545 (1996) http://dx.doi.org/10.1088/0305-4470/29/23/018[Crossref]
  • [17] J.M. Cerveró, Int. J. Theor. Phys. 38, 2095 (1999) http://dx.doi.org/10.1023/A:1026614021448[Crossref]
  • [18] P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)
  • [19] K. Andriopoulos, P.G.L. Leach, J. Phys. A 38, 4365 (2005) http://dx.doi.org/10.1088/0305-4470/38/20/005[Crossref]
  • [20] U. Niederer, Helvetica Physica Acta 45, 803 (1972)
  • [21] U. Niederer, Helvetica Physica Acta 46, 191 (1973)
  • [22] H.R. Lewis, W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969) http://dx.doi.org/10.1063/1.1664991[Crossref]
  • [23] H.R. Lewis, W.E. Lawrence, J.D. Harris, Phys. Rev. Lett. 77, 5157 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.5157[Crossref]
  • [24] M.V. Berry, N.L. Balazs, Am. J. Phys. 47, 264 (1979) http://dx.doi.org/10.1119/1.11855[Crossref]
  • [25] A.G. Makowsky, J. Phys. A 29, 6003 (1996) http://dx.doi.org/10.1088/0305-4470/29/18/028[Crossref]
  • [26] G. Scalari, C. Walther, J. Faist, H. Beere, D. Ritchie, Appl. Phys. Lett. 88, 141102 (2006) http://dx.doi.org/10.1063/1.2191407[Crossref]
  • [27] C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001) http://dx.doi.org/10.1088/0034-4885/64/11/204[Crossref]
  • [28] T.M. Fromhold et al., Nature 428, 726 (2004) http://dx.doi.org/10.1038/nature02445[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0040-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.