PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 6 | 2 | 344-350
Tytuł artykułu

Exact and approximate statistical approaches for the exergy of blackbody radiation

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a long term debate in literature about the exergy of blackbody radiation (BBR). Most authors contributing to this dispute used classical thermodynamics arguments. The objective of this paper is to propose a statistical thermodynamics approach. This gives new perspectives to previous results. Four simple statistical microscopic models are used to derive BBR exergy. They consist of combinations of quantum and classical descriptions of the state occupation number and entropy, respectively. In all four cases the BBR exergy (or exergy flux density) is given by the internal energy (or energy flux density) times an efficiency-like factor containing the environment temperature and the blackbody radiation temperature. One shows that Petela-Landsberg-Press efficiency is the “exact” result while the Jeter (Carnot) efficiency corresponds to the classical approximation. Other two (new) approximate efficiency-like factors are also reported.
Wydawca

Czasopismo
Rocznik
Tom
6
Numer
2
Strony
344-350
Opis fizyczny
Daty
wydano
2008-06-01
online
2008-03-26
Twórcy
  • Candida Oancea Institute, Polytechnic University of Bucharest, Spl. Independentei 313, Bucharest, 060042, Romania, badescu@theta.termo.pub.ro
Bibliografia
  • [1] R. Petela, J. Heat Transfer 86, 187 (1964)
  • [2] D.C. Spanner, Introduction to thermodynamics (Academic Press, London, 1964) 218
  • [3] P.T. Landsberg, J.R. Mallinson, Thermodynamic constraints, effective temperatures and solar cells, In: Coll. Int. sur l’Electricite Solaire (Toulouse, CNES, 1976) 27
  • [4] W.H. Press, Nature 264, 734 (1976) http://dx.doi.org/10.1038/264734a0[Crossref]
  • [5] S.J. Jeter, Solar Energy 26, 231 (1981) http://dx.doi.org/10.1016/0038-092X(81)90207-3[Crossref]
  • [6] A. Bejan, J. Sol. Energy Engng. 109, 46 (1987) http://dx.doi.org/10.1115/1.3268177[Crossref]
  • [7] A. Bejan, Advanced engineering thermodynamics (Wiley, New York, 1988)
  • [8] R. Petela, Solar Energy 74, 469 (2003) http://dx.doi.org/10.1016/S0038-092X(03)00226-3[Crossref]
  • [9] S. Sieniutycz, P. Kuran, Int. J. Heat Mass Transfer 49, 3264 (2006) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.01.036[Crossref]
  • [10] J. Szargut et al., Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, (Hemispere Publ. Co., Newe York and Springer-Verlag, Berlin, 1988)
  • [11] L. Landau, E. Lifchitz, Physique Statistique (MIR, Moscou, 1967)
  • [12] P.T. Landsberg, Thermodynamics and Statistical Mechanics (Dover, New York, 1990)
  • [13] P.T. Landsberg, V. Badescu, In: S. Sieniutycz, A. De Vos (Eds.), Thermodynamics of energy conversion and transport (Springer, New York, 2000)
  • [14] S. Karlsson, Phys. Scripta 26, 329 (1982) http://dx.doi.org/10.1088/0031-8949/26/4/009[Crossref]
  • [15] R. Petela, The problem of derivation of formula for heat radiation exergy, Zesz. Nauk. Pol. Sl., Energetyka 50, 105 (1974) (in Polish)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0033-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.