Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we introduce a method for finding a time independent Hamiltonian of a given Hamiltonian dynamical system by canonoid transformation of canonical momenta. We find a condition that the system should satisfy to have an equivalent time independent formulation. We study the example of a damped harmonic oscillator and give the new time independent Hamiltonian for it, which has the property of tending to the standard Hamiltonian of the harmonic oscillator as damping goes to zero.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
313-323
Opis fizyczny
Daty
wydano
2007-09-01
online
2007-05-13
Twórcy
autor
- Center of Mathematics and Physics, Technical University of Łódź, Al. Politechniki 11, 90-924, Łódź, Poland, mdobrski@im0.p.lodz.pl
Bibliografia
- [1] F. Gantmacher: Lectures in Analytical Mechanics, Mir Publishers, Moscow, 1970.
- [2] V.I. Arnold: Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978.
- [3] R.M. Santilli: Foundations of Theoretical Mechanics I, Springer-Verlag, New York, 1978.
- [4] R.M. Santilli: Foundations of Theoretical Mechanics II, Springer-Verlag, New York, 1983.
- [5] G. Morandi et al.: “The inverse problem in the calculus of variations and the geometry of the tangent bundle”, Phys. Rep., Vol. 188, (1990), pp. 147–284. http://dx.doi.org/10.1016/0370-1573(90)90137-Q[Crossref]
- [6] Y. Gelman and E.J. Saletan: “q-Equivalent particle Hamiltonians”, Nuovo Cimento B, Vol. 18, (1973), pp. 53–89.
- [7] P. Havas: “The range of application of Lagrange formalism”, Suppl. Nuovo Cimento, Vol. 5, (1957), pp. 364–388.
- [8] J.F. Plebański and H. Garcá-Compeán: “The Lagrangian for a causal curve”, Rev. Mex. Fis., Vol. 43, (1997), pp. 634–648.
- [9] G. Dito and F.J. Turrubiates: “The damped harmonic oscillator in deformation quantization”, Phys. Lett. A, Vol. 352, (2006), pp. 309–316. http://dx.doi.org/10.1016/j.physleta.2005.12.013[Crossref]
- [10] Inverse of the regularized incomplete beta function, Wolfram Research, http://functions.wolfram.com/GammaBetaErf/InverseBetaRegularized/.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-007-0024-7