Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2007 | 5 | 3 | 377-384
Tytuł artykułu

On the symmetry of magnetic structures in terms of the fibre bundles

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the application of the fibre bundle approach to the description of the magnetic structures and their symmetry groups. Hence the explicit formulas describing both the variety of magnetic structures and their symmetry groups have been derived. The assumption was made that the bundle sections correspond to magnetizations of the separate crystal planes multiplied by a certain Gaussian factor defined in ℝ3, the last factor making the problem continuous and more physical.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
5
Numer
3
Strony
377-384
Opis fizyczny
Daty
wydano
2007-09-01
online
2007-05-13
Twórcy
  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland, warcz@us.edu.pl
autor
  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland
  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland
  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland
  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland
Bibliografia
  • [1] D.B. Litvin: “Spin Translation Groups and Neutron Diffraction Analysis”, Acta Crystallogr. A, Vol. 29, (1973), pp. 651–660. http://dx.doi.org/10.1107/S0567739473001658[Crossref]
  • [2] D.B. Litvin and W. Opechowski: “Spin Groups”, Physica, Vol. 76, (1974), pp. 538–554. http://dx.doi.org/10.1016/0031-8914(74)90157-8[Crossref]
  • [3] D.B. Litvin: “Spin Point Groups”, Acta Crystallogr. A, Vol. 33, (1977), pp. 279–287. http://dx.doi.org/10.1107/S0567739477000709[Crossref]
  • [4] V.A. Koptsik and I.N. Kotzev: “K teorii i klassifikatsii grupp tsvetnoj simmetrii I. P-simmetriya” (“On the Theory and Classification of Color Symmetry Groups. I. Psymmetry”) [In Russian], In: Communications of the Joint Inst. for Nuclear Research, Dubna, 1974, pp. 4–8067.
  • [5] V.A. Koptsik: “Advances in theoretical crystallography. Color symmetry of defect crystals”, Krist. Tech., Vol. 10, (1975), pp. 231–245. [Crossref]
  • [6] V.A. Koptsik: “The theory of symmetry of space modulated crystal structures”, Ferroelectrics, Vol. 21, (1978), pp. 499–501.
  • [7] R. Lifshitz: “Symmetry of Magnetic Ordered Quasicrystals”, Phys. Rev. Lett., Vol. 80, (1998), pp. 2717–2720. http://dx.doi.org/10.1103/PhysRevLett.80.2717[Crossref]
  • [8] D.B. Litvin: “Wreath groups”, Physica, Vol. 101A, (1980), pp. 339–350. [Crossref]
  • [9] D.B. Litvin: “Wreath products and the symmetry of incommensurate crystals”, Ann. Israel Phys. Soc., Vol. 3, (1980), pp. 371–374.
  • [10] D. B. Litvin: “Wreath groups-symmetry of crystals with structural distortions”, Phys. Rev. B, Vol. 21, (1980), pp. 3184–3192. http://dx.doi.org/10.1103/PhysRevB.21.3184[Crossref]
  • [11] R. Sulanke and P. Wintgen: Differentialgeometrie und Faserbündel, Deutscher Verlag der Wissenschaften, Berlin, 1972.
  • [12] P. Gusin and J. Warczewski: “On the relations between magnetization and topological invariants of the physical system”, J. Magn. Magn. Mater., Vol. 281, (2004), pp. 178–187. http://dx.doi.org/10.1016/j.jmmm.2004.04.102[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-007-0023-8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.