PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2007 | 5 | 4 | 516-527
Tytuł artykułu

Exact solutions of the radial Schrödinger equation for some physical potentials

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrödinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained.
Wydawca
Czasopismo
Rocznik
Tom
5
Numer
4
Strony
516-527
Opis fizyczny
Daty
wydano
2007-12-01
online
2007-12-01
Twórcy
  • Department of Physics, Near East University, Nicosia, North Cyprus, Mersin-10, Turkey , sikhdair@neu.edu.tr
  • Department of Physics, Middle East Technical University, 06531, Ankara, Turkey , sever@metu.edu.tr
Bibliografia
  • [1] L.I. Schiff: Quantum Mechanics, 3rd ed., McGraw-Hill Book Co., New York, 1955.
  • [2] L.D. Landau and E.M. Lifshitz: Quantum Mechanics: Non-Relativistic Theory, 3rd ed., Pergamon, New York, 1977
  • [3] E.T. Whittaker and G.N. Watson: Modern Analysis, 4th ed., Cambridge University Press, London, 1927.
  • [4] R.L. Liboff: Introductory Quantum Mechanics, 4th ed., Addison Wesley, San Francisco, CA, 2003.
  • [5] M.M. Nieto: “Hydrogen atom and relativistic pi-mesic atom in N-space dimension”, Am. J. Phys., Vol. 47, (1979), pp. 1067–1072. http://dx.doi.org/10.1119/1.11976[Crossref]
  • [6] S.M. Ikhdair and R. Sever: “Exact polynomial eigensolutions of the Schrödinger equation for the pseudoharmonic potential”, J. Mol. Struc.-Theochem, Vol. 806, (2007), pp. 155–158. http://dx.doi.org/10.1016/j.theochem.2006.11.019[Crossref]
  • [7] S.M. Ikhdair and R. Sever: “Exact polynomial solutions of the Mie-type potential in the N-dimensional Schrödinger equation”, Preprint: arXiv:quant-ph/0611065.
  • [8] M. Sage and J. Goodisman: “Improving on the conventional presentation of molecular vibrations: Advantages of the pseudoharmonic potential and the direct construction of potential energy curves”, Am. J. Phys., Vol. 53, (1985), pp. 350–355. http://dx.doi.org/10.1119/1.14408[Crossref]
  • [9] F. Cooper, A. Khare and U. Sukhatme: “Supersymmetry and quantum mechanics and large-N expansions ”, Phys. Rep., Vol. 251, (1995), pp. 267–385 http://dx.doi.org/10.1016/0370-1573(94)00080-M[Crossref]
  • [10] T.D. Imbo and U.P. Sukhatme: “Supersymmetric quantum mechanics”, Phys. Rev. Lett., Vol. 54, (1985), pp. 2184–2187. http://dx.doi.org/10.1103/PhysRevLett.54.2184[Crossref]
  • [11] Z.-Q. Ma and B.-W. Xu: “Quantum correction in exact quantization rules”, Europhys. Lett., Vol. 69, (2005), pp. 685–691. http://dx.doi.org/10.1209/epl/i2004-10418-8[Crossref]
  • [12] S.-H. Dong, C.-Y. Chen and M. Lozada-Casson: “Generalized hypervirial and Balanchard’s recurrence relations for radial matrix elements”, J. Phys. B: At. Mol. Opt. Phys., Vol. 38, (2005), pp. 2211–2220. http://dx.doi.org/10.1088/0953-4075/38/13/013[Crossref]
  • [13] S.-H. Dong, D. Morales and J. Garc’ia-Ravelo: “Exact quantization rule and its applications to physical potentials”, Int. J. Mod. Phys. E, Vol. 16, (2007), pp. 189–198. http://dx.doi.org/10.1142/S0218301307005661[Crossref]
  • [14] W.-C. Qiang and S.-H. Dong: “Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method”, Phys. Lett. A, Vol. 363, (2007), pp. 169–176. http://dx.doi.org/10.1016/j.physleta.2006.10.091[Crossref]
  • [15] A.F. Nikiforov and V.B. Uvarov: Special Functions of Mathematical Physics, Birkhauser, Basel, 1988.
  • [16] G. Sezgo: Orthogonal Polynomials, American Mathematical Society, New York, 1959.
  • [17] S.M. Ikhdair and R. Sever: “Exact polynomial solution of PT/non-PT-symmetric and non-Hermitian modified Woods-Saxon potential by the Nikiforov-Uvarov method”, Preprint: arXiv:quant-ph/0507272; S.M. Ikhdair and R. Sever: “Polynomial solution of non-central potentials”, Preprint: arXiv:quant-ph/0702186.
  • [18] S.M. Ikhdair and R. Sever: “Exact solution of the Klein-Gordon equation for the PTsymmetric generalized Woods-Saxon potential by the Nikiforov-Uvarov method”, Ann. Phys. (Leipzig), Vol. 16, (2007), pp. 218–232. http://dx.doi.org/10.1002/andp.200610232[Crossref]
  • [19] S.M. Ikhdair and R. Sever: “Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular momentum”, Preprint: arXiv:quant-ph/0508009.
  • [20] S.M. Ikhdair and R. Sever: “A perturbative treatment for the energy levels of neutral atoms”, Int. J. Mod. Phys. A, Vol. 21, (2006), pp. 6465–6476. http://dx.doi.org/10.1142/S0217751X06034240[Crossref]
  • [21] S.M. Ikhdair and R. Sever: “Bound energy for the exponential-cosine-screened Coulomb potential”, Preprint: arXiv:quant-ph/0604073.
  • [22] S.M. Ikhdair and R. Sever: “Bound states of a more general exponential screened Coulomb potential”, Preprint: arXiv:quant-ph/0604078.
  • [23] S.M. Ikhdair and R. Sever: “A perturbative treatment for the bound states of the Hellmann potential”, J. Mol. Struc.-Theochem, Vol. 809, (2007), pp. 103–113. http://dx.doi.org/10.1016/j.theochem.2007.01.019[Crossref]
  • [24] O. Bayrak, I. Boztosun and H. Ciftci: “Exact analytical solutions to the Kratzer potential by the asymptotic iteration method”, Int. J. Quantum Chem., Vol. 107, (2007), pp. 540–544. http://dx.doi.org/10.1002/qua.21141[Crossref]
  • [25] R.L. Hall and N. Saad: “Smooth transformations of Kratzer’s potential in N dimensions”, J. Chem. Phys., Vol. 109, (1998), pp. 2983–2986. http://dx.doi.org/10.1063/1.476889[Crossref]
  • [26] M.R. Setare and E. Karimi: “Algebraic approach to the Kratzer potential”, Phys. Scr., Vol. 75, (2007), pp. 90–93. http://dx.doi.org/10.1088/0031-8949/75/1/015[Crossref]
  • [27] S.M. Ikhdair and R. Sever: “Heavy-quark bound states in potentials with the Bethe-Salpeter equation“, Z. Phys. C, Vol. 56, (1992), pp. 155–160 http://dx.doi.org/10.1007/BF01589718[Crossref]
  • [28] S.M. Ikhdair and R. Sever: “Bethe-Salpeter equation for non-self-conjugate mesons in a power-law potential”, Z. Phys. C, Vol. 58, (1993), pp. 153–157 http://dx.doi.org/10.1007/BF01554088[Crossref]
  • [29] S.M. Ikhdair and R. Sever: “Bound state enrgies for the exponential cosine screened Coulomb potential”, Z. Phys. D, Vol. 28, (1993), pp. 1–5
  • [30] S.M. Ikhdair and R. Sever: “Solution of the Bethe-Salpeter equation with the shifted 1/N expansion technique”, Hadronic J., Vol. 15, (1992), pp. 389–403
  • [31] S.M. Ikhdair and R. Sever: “Bc meson spectrum and hyperfine splittingsin the shifted large-N expansion technique”, Int. J. Mod. Phys. A, Vol. 18, (2003), pp. 4215–4231 http://dx.doi.org/10.1142/S0217751X03015088[Crossref]
  • [32] S.M. Ikhdair and R. Sever: “Spectroscopy of Bc meson in the semi-relativistic quark model using the shifted large-N expansion method”, Int. J. Mod. Phys. A, Vol. 19, (2004), pp. 1771–1791 [Crossref]
  • [33] S.M. Ikhdair and R. Sever: “Bc and heavy meson spectroscopy in the local approximation of the Schrödinger equation with relativistic kinematics”, Int. J. Mod. Phys. A, Vol. 20, (2005), pp. 4035–4054 http://dx.doi.org/10.1142/S0217751X05022275[Crossref]
  • [34] S.M. Ikhdair and R. Sever: “Mass spectra of heavy quarkonia and Bc decay constant for static scalar-vector interactions with relativistic kinematics”, Int. J. Mod. Phys. A, Vol. 20, (2005), pp. 6509–6531 http://dx.doi.org/10.1142/S0217751X05021294[Crossref]
  • [35] S.M. Ikhdair and R. Sever: “Bound energy masses of mesons containing the fourth generation and iso-singlet quarks”, Int. J. Mod. Phys. A, Vol. 21, (2006), pp. 2191–2199 http://dx.doi.org/10.1142/S0217751X06031636[Crossref]
  • [36] S.M. Ikhdair and R. Sever: “A systematic study on non-relativistic quarkonium interaction”, Int. J. Mod. Phys. A, Vol. 21, (2006), pp. 3989–4002 [Crossref]
  • [37] S.M. Ikhdair, O. Mustafa and R. Sever: “Light and heavy meson spectra in the shifted 1/N expansion method”, Tr. J. Phys., Vol. 16, (1992), pp. 510–518
  • [38] S.M. Ikhdair, O. Mustafa and R. Sever: “Solution of Dirac equation for vector and scalar potentials and some applications” Hadronic J., Vol. 16, (1993), pp. 57–74.
  • [39] S. Özçelik and M. Şimşek: “Exact solutions of the radial Schr"odinger equation for inverse-power potentials”, Phys. Lett. A, Vol. 152, (1991), pp. 145–150. http://dx.doi.org/10.1016/0375-9601(91)91081-N[Crossref]
  • [40] S.-H. Dong: “Schrödinger equation with the potential V (r) = Ar −4+Br −3+Cr −2+Dr −1”, Phys. Scr., Vol. 64, (2001), pp. 273–276; S.-H. Dong: “Exact solutions of the two-dimensional Schrödinger equation with certain central potentials”, Preprint: arXiv:quant-ph/0003100. http://dx.doi.org/10.1238/Physica.Regular.064a00273
  • [41] S.-H. Dong: “On the solutions of the Schrödinger equation with some anharmonic potentials”, Phys. Scr., Vol. 65, (2002), pp. 289–295. http://dx.doi.org/10.1238/Physica.Regular.065a00289[Crossref]
  • [42] S.M. Ikhdair and R. Sever: “On the solutions of the Schrödinger equation with some molecular potentials: Wave function ansatz”, Preprint: arXiv:quant-ph/0702052.
  • [43] R.J. Le Roy and R.B. Bernstein: “Dissociation energy and long-range potential of diatomic molecules from vibration spacings of higher levels”, J. Chem. Phys., Vol. 52, (1970), pp. 3869–3879. http://dx.doi.org/10.1063/1.1673585[Crossref]
  • [44] C. Berkdemir, A. Berkdemir and J. Han: “Bound state solutions of the Schrödinger equation for modified Kratzer’s molecular potential”, Chem. Phys. Lett., Vol. 417, (2006), pp. 326–329. http://dx.doi.org/10.1016/j.cplett.2005.10.039[Crossref]
  • [45] A. Chatterjee: “Large N-expansion in Quantum mechanics, atomic physics and some O(N) invariant systems”, Phys. Rep., Vol. 186, (1990), pp. 249–370. http://dx.doi.org/10.1016/0370-1573(90)90048-7[Crossref]
  • [46] G. Esposito: “Complex parameters in quantum mechanics”, Found. Phys. Lett., Vol. 11, (1998), pp. 636–547.
  • [47] G.A. Natanzon: “General properties of potentials for which the Schr"odinger equation can be solved by means of hypergeometric functions”, Theor. Math. Phys., Vol. 38, (1979), pp. 146–153. http://dx.doi.org/10.1007/BF01016836[Crossref]
  • [48] G. Lévai: “A search for shape invariant solvable potentials”, J. Phys. A: Math. Gen., Vol. 22, (1989), pp. 689–702 http://dx.doi.org/10.1088/0305-4470/22/6/020[Crossref]
  • [49] G. Lévai: “A class of exactly solvable potentials related to the Jacobi polynomials”; J. Phys. A: Math. Gen., Vol. 24, (1991), pp. 131–146. http://dx.doi.org/10.1088/0305-4470/24/1/022[Crossref]
  • [50] K.J. Oyewumi and E.A. Bangudu: “Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces”, Arab. J. Sci. Eng., Vol. 28, (2003), pp. 173–182.
  • [51] P.M. Morse: “Diatomic molecules according to the wave mechanics. II. Vibrational levels”, Phys. Rev., Vol. 34, (1929), pp. 57–64 http://dx.doi.org/10.1103/PhysRev.34.57[Crossref]
  • [52] N. Rosen and P.M. Morse: “On the vibrations of polyatomic molecules”, Phys. Rev., Vol. 42, (1932), pp 210–217. http://dx.doi.org/10.1103/PhysRev.42.210[Crossref]
  • [53] K.J. Oyewumi: “Analytical solutions of the Kratzer-Fues potential in an arbitrary number of dimensions”, Found. Phys. Lett., Vol. 18, (2005), pp. 75–84. http://dx.doi.org/10.1007/s10702-005-2481-9[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-007-0022-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.