Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 5 | 3 | 428-445
Tytuł artykułu

On formation of thin SiO2/a-Si:H interface when biased oxidized semiconductor surface interacts with plasma or liquid solution

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this paper we present the results of research into a relation(s) between the bias voltage of an oxide/a-Si:H/c-Si sample during formation of very-thin and thin oxides and the resulting distribution of oxide/semiconductor interface states in the a-Si:H band gap. Two oxygen plasma sources were used for the first time in our laboratories for formation of oxide layers on a-Si:H: i) inductively coupled plasma in connection with its application at plasma anodic oxidation; ii) rf plasma as the source of positive oxygen ions for the plasma immersion ion implantation process. The oxide growth on a-Si:H during plasma anodization is also simply described theoretically. Properties of plasmatic structures are compared to ones treated by chemical oxidation that uses 68 wt% nitric acid aqueous solutions. We have confirmed that three parameters of the oxide growth process - kinetic energy of interacting particles, UV-VIS-NIR light emitted by plasma sources, and bias of the samples - determine the distribution of defect states at both the oxide/a-Si:H interface and the volume of the a-Si:H layer, respectively. Additionally, a bias of the sample applied during the oxide growth process has a similar impact on the distribution of defect states as it can be observed during the bias-annealing of similar MOS structure outside of the plasma reactor.
Opis fizyczny
  • Institute of Physics SAS, Dúbravská cesta 9, 845 11, Bratislava, Slovak Republic
  • Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Organization, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
  • Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Organization, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
  • Department of Engineering Fundamentals, Faculty of Electrical Engineering, University of Žilina, 031 01, Liptovský Mikuláš, Slovak Republic
  • Institute of Physics SAS, Dúbravská cesta 9, 845 11, Bratislava, Slovak Republic
  • [1] J. Liu, G.L. Huppert and H.H. Sawin: “Ion bombardment in rf plasmas”, J. Appl. Phys., Vol. 68, (1990), pp. 3916–3934.[Crossref]
  • [2] J.K. Olthoff, R.J. Van Brunt, S.B. Radovanov, J.A. Rees and R. Surowiec: “Kinetic-energy distributions of ions sampled from argon plasmas in a parallel-plate, radiofrequency reference cell”, J. Appl. Phys., Vol. 75, (1994), pp. 115–125.[Crossref]
  • [3] A.D. Kuypers and H.J. Hopman: “Measurement of ion energy distributions at the powered rf electrode in a variable magnetic field”, J. Appl. Phys., Vol. 67, (1990), pp. 1229–1240.[Crossref]
  • [4] M.A. Sobolewski, J.K. Olthoff and Y. Wang: “Ion energy distributions and sheath voltages in a radio-frequency-biased, inductively-coupled plasma reactor”, J. Appl. Phys., Vol. 85, (1999), pp. 3966–3975.[Crossref]
  • [5] N. Mizutani and T. Hayashi: “Charge Exchange Ion Energy Distribution at the RF Electrode in a Plasma Etching Chamber”, Jpn. J. Appl. Phys., Vol. 38, (1999), pp. 4206–4212.[Crossref]
  • [6] E. Kawamura, V. Vahedi, M.A. Lieberman and C.K. Birdsall: “Ion Energy Distributions in RF Sheaths; Review, Analysis and Simulation”, Plasma Sources Sci. Technol., Vol. 8, (1999), pp. R45–R64.[Crossref]
  • [7] S.B. Wang and A.E. Wendt: “Control of ion energy distribution at substrates during plasma processing”, J. Appl. Phys., Vol. 88, (2000), pp. 643–646.[Crossref]
  • [8] S. Rauf: “Effect of bias voltage waveform on ion energy distribution”, J. Appl. Phys., Vol. 87, (2000), pp. 7647–7651.[Crossref]
  • [9] K. Maeshige, G. Washio, T. Yagisawa and T. Makabe: “Functional design of a pulsed two-frequency capacitively coupled plasma in CF4/Ar for SiO2 etching”, J. Appl. Phys., Vol. 91, (2002), pp. 9494–9501.[Crossref]
  • [10] T. Fujita and T. Makabe: “Diagnostics of a wafer interface of a pulsed two-frequency capacitively coupled plasma for oxide etching by emission selected computerized tomography”, Plasma Sources Sci. Technol., Vol. 11, (2002), pp. 142–145.[Crossref]
  • [11] K. Okazaki, T. Makabe and Y. Yamaguchi: “Modeling of a rf glow discharge plasma”, Appl. Phys. Lett., Vol. 54, (1989), pp. 1742–1744.[Crossref]
  • [12] T. Makabe, N. Nakano and Y. Yamaguchi: “Modeling and diagnostics of the structure of rf glow discharges in Ar at 13.56 MHz”, Phys. Rev. A, Vol. 45, (1992), pp. 2520–2531.[Crossref]
  • [13] I. Jiménez and J.L. Sacedón: “Influence of Si oxidation methods on the distribution of suboxides at Si/SiO2 interfaces and their band alignment: a synchrotron photoemission study”, Surf. Sci., Vols. 482-485, (2001), pp. 272–278.[Crossref]
  • [14] H. Kobayashi, A. Asano, M. Takahashi, K. Yoneda and Y. Todokoro: “Decrease in gap states at ultrathin SiO2/Si interfaces by crown-ether cyanide treatment”, Appl. Phys. Lett., Vol. 77, (2000), pp. 4392–4394.[Crossref]
  • [15] K. Volz and W. Ensinger: “Growth of the carbide, nitride and oxide of silicon by plasma immersion ion implantation”, Surf. Coat. Technol., Vol. 156, (2002), pp. 237–243.[Crossref]
  • [16] E. Pinčík, H. Glesková, J. Műllerová, V. Nádaždy, S. Mráz, L. Ortega, M. Jergel, C. Falcony, R. Brunner, K. Gmucová, M. Zeman, R.A.C.M.M. van Swaaij, M. Kučera, R. Juráni and M. Zahoran: “Properties of semiconductor surfaces covered with very thin insulating overlayers prepared by impacts of low-energy particles”, Vacuum, Vol. 67, (2002), pp. 131–141.[Crossref]
  • [17] Asuha, T. Kobayashi, O. Maida, M. Inoue, M. Takahashi, Y. Todokoro and H. Kobayashi: “Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si”, Appl. Phys. Lett., Vol. 81, (2002), pp. 3410–3412.[Crossref]
  • [18] H. Águas, Y. Nunes, E. Fortunato, P. Gordo, M. Maneira and R. Martins: “Correlation between a-Si:H surface oxidation process and the performances of MIS structures”, Thin Solid Films, Vol. 383, (2001), pp. 185–188.[Crossref]
  • [19] O. Bowallius and S. Anand: “Evaluation of different oxidation methods for silicon for scanning capacitance microscopy”, Mat. Sci. In Semicond. Processing, Vol. 4, (2001), pp. 81–84.[Crossref]
  • [20] V. Nádaždy, R. Durný and E. Pinčík: “Evidence for the improved defect-pool model for gap states in amorphous silicon from charge DLTS experiments on undoped a-Si:H”, Phys. Rev. Lett., Vol. 78, (1997), pp. 1102–1105.[Crossref]
  • [21] K. Winer: “Defect formation in a-Si:H”, Phys. Rev. B, Vol. 41, (1990), pp. 12150–12161; K. Winer: “Chemical-equilibrium description of the gap-state distribution in a-Si:H”, Phys. Rev. Lett., Vol. 63, (1989), pp. 1487–1490.[Crossref]
  • [22] M.J. Powell and S.C. Dean: “Improved defect-pool model for charged defects in amorphous silicon”, Phys. Rev. B, Vol. 48, (1993), pp. 10815–10827.[Crossref]
  • [23] M.J. Powell and S.C. Dean: “Defect-pool model and the hydrogen density of states in hydrogenated amorphous silicon”, Phys. Rev. B, Vol. 53, (1996), pp. 10121–10132.[Crossref]
  • [24] R.A.C.M.M. Van Swaaij, V. Nádaždy, M. Zeman, E. Pinčík and J.W. Metselaar: “Defect re-distribution in amorphous silicon below equilibration temperature”, J. Non-Cryst. Sol., Vols. 266-269, (2000), pp. 553–557.[Crossref]
  • [25] H. Kobayashi, M. Takahashi, O. Maida, A. Asano, T. Kubota, J. Ivančo, A. Nakajima and K. Akimoto: “Semiconductor surface and interface passivation by cyanide treatment”, Appl. Surf. Sci. Vol. 235, (2004), pp. 279–292.[Crossref]
  • [26] T.J. Mego: “Improved feedback charge method for quasistatic CV measurements in semiconductors”, Rev. Sci. Instrum., Vol. 57, (1986), pp. 2798–2805.[Crossref]
  • [27] I. Thurzo and M. Grendel: “On the relationship between the feedback charge method, charge transient spectroscopy and C-V measurements of semiconductors and insulators”, Meas. Sci. Technol., Vol. 3, (1992), pp. 726–731.[Crossref]
  • [28] I. Thurzo, K. Gmucová, J. Orlický and J. Pavlásek: “Introduction to a kinetics-sensitive double-step voltcoulometry”, Rev. Scient. Instrum., Vol. 70, (1999), pp. 3723–3734.[Crossref]
  • [29] J.F. Dewald: “A Theory of the Kinetics of Formation of Anode Films at High Fields”, J. Electrochem. Soc., Vol. 102, (1955), pp. 1–6.[Crossref]
  • [30] P. Friedel, S. Gourrier and T. Dimitriou: “Kinetics of GaAs Plasma Anodization”, J. Electrochem. Soc., Vol. 128, (1981), pp. 1857–1861.[Crossref]
  • [31] S. Taylor, W. Eccleston and K.J. Barlow: “Theory for the plasma anodization of silicon under constant voltage and constant current conditions”, J. Appl. Phys., Vol. 64, (1988), pp. 6515–6522.[Crossref]
  • [32] E. Pinčík, H. Kobayashi, R. Brunner, R. Hajossy, H. Glesková, M. Takahashi and M. Mikula: “Very Thin and Ultrathin Oxide/a-Si:H Structures and Polycrystalline-Si MOS Type of Solar Cells”, In: Proc. of SILICON’ 2006, 10th Scientific and Business Conference, Rožnov pod Radhoštěm (Czech Republic), 2006, TECON Scientific Ltd., Rožnov pod Radhoštěm, 2006, pp. 342–364.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.