Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 5 | 3 | 253-284
Tytuł artykułu

Romanovski polynomials in selected physics problems

Treść / Zawartość
Warianty tytułu
Języki publikacji
We briefly review the five possible real polynomial solutions of hypergeometric differential equations. Three of them are the well known classical orthogonal polynomials, but the other two are different with respect to their orthogonality properties. We then focus on the family of polynomials which exhibits a finite orthogonality. This family, to be referred to as the Romanovski polynomials, is required in exact solutions of several physics problems ranging from quantum mechanics and quark physics to random matrix theory. It appears timely to draw attention to it by the present study. Our survey also includes several new observations on the orthogonality properties of the Romanovski polynomials and new developments from their Rodrigues formula.
Opis fizyczny
  • Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, 78290, San Luis Potosí, México
  • Instituto de Física, Universidad Autónoma de San Luis Potosí, 78290, San Luis Potosí, México
  • Instituto de Física, Universidad Autónoma de San Luis Potosí, 78290, San Luis Potosí, México
  • [1] E.J. Routh: “On some properties of certain solutions of a differential equation of second order”, Proc. London Math. Soc., Vol. 16, (1884), pp. 245–261.[Crossref]
  • [2] V. Romanovski: “Sur quelques classes nouvelles de polynomes orthogonaux”, C. R. Acad. Sci. Paris, Vol. 188, (1929), pp. 1023–1025.
  • [3] A.F. Nikiforov and V.B. Uvarov: Special Functions of Mathematical Physics, Birkhäuser Verlag, Basel, 1988.
  • [4] P.A. Lesky: “Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen”, Z. Angew. Math. Mech., Vol. 76, (1996), pp. 181–184.[Crossref]
  • [5] H.J. Weber: “Connections between real polynomial solutions of hypergeometrictype differential equations with Rodrigues formula”, Centr. Eur. J. Math., Vol. 5(2), (2007), pp. 415–427.[Crossref]
  • [6] D.E. Alvarez-Castillo and M. Kirchbach: “Exact spectrum and wave functions of the hyperbolic Scarf potential in terms of finite Romanovski polynomials”, E-Print Archive: quant-ph/0603122.
  • [7] C.B. Compean and M. Kirchbach: “The trigonometric Rosen-Morse potential in supersymmetric quantum mechanics and its exact solutions”, J. Phys. A: Math. Gen., Vol. 39, (2006), pp. 547–557 and refs. therein.[Crossref]
  • [8] Wen-Chao Qiang: “Bound States of Klein-Gordon equation for ring-shaped harmonic oscillator scalar and vector potentials”, Chin. Phys., Vol. 12, (2003), pp. 136–139; Wen-Chao Qiang and Shi-Hai Dong: “SUSYQM and SWKB Approaches to the Relativistic Equations with Hyperbolic Potential V0tangh2(r/d),” Physica Scripta, Vol. 72, (2005), pp. 127–131.
  • [9] R. Dutt, A. Gangopadhyaya and U.P. Sukhatme: “Non-Central Potentials and Spherical Harmonics Using Supersymmetry and Shape Invariance”, Am. J. Phys., Vol. 65, (1997), pp. 400–403; E-Print Archive: hep-th / 9611087.[Crossref]
  • [10] N. Cotfas: “Systems of orthogonal polynomials defined by hypergeometric type equations with application to quantum mechanics”, Centr. Eur. J. Phys., Vol. 2, (2004), pp. 456–466; N. Cotfas: “Shape invariant hypergeometric type operators with application to quantum mechanics”, E-Print Archive: math-ph/0603032.[Crossref]
  • [11] G. Szegö: Orthogonal Polynomials, Vol. XXIII, American Math. Soc. Prov., RI, 1939.
  • [12] M.E.H. Ismail: Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge Univ. Press, 2005.
  • [13] H.L. Krall and O. Fink: “A New Class of Orthogonal Polynomials: The Bessel Polynomials”, Trans. Amer. Math. Soc., Vol. 65, (1948), pp. 100–115.[Crossref]
  • [14] A. Zarzo-Altarejos: “Differential Equations of the Hypergeometric Type”, Thesis (Ph.D.), Faculty of Science, University of Granada, 1995 (in Spanish).
  • [15] R. Askey: “Beta integrals and the associated orthogonal polynomials”, In: Number Theory, Vol. 1395 of Lecture Notes in Math., Madras, Springer, Berlin, 1987, pp. 84–121.
  • [16] C.B. Compean and M. Kirchbach: “Angular Momentum Dependent Quark Potential of QCD Traits and Dynamical O(4) Symmetry”, Bled Workshops in Physics, Vol. 7, (2006), pp. 7–19, E-Print Archive: quant-ph/0610001.
  • [17] P. Dennery and A. Krzywicki: Mathematics for Physicists, Dover, New York, 1996.
  • [18] M. Abramowitz and I.A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 2nd ed., Dover, New York, 1972.
  • [19] G.B. Arfken and H.J. Weber: Mathematical Methods for Physicists, 6th ed., Elsevier-Academic Press, Amsterdam, 2005.
  • [20] A.B.J. Kuijlaars, A. Martínez-Finkelshtein and R. Orive: “Orthogonality of Jacobi Polynomials with General Parameters”, Electronic Transactions on Numerical Analysis, Vol. 19, (2003), pp. 1–17.
  • [21] W. Greiner and B. Müller: Quantum Mechanics: Symmetries, 2nd rev. ed., Springer, Berlin-Heidelberg, 2004; G.F. Torres del Castillo and J.L. Calvario Acócal: “On the Dynamical Symmetry of the Quantum Kepler Problem”, Rev. Mex. Fis., Vol. 44(4), (1998), pp. 344–352.
  • [22] V.C. Aguilera-Navarro, E. Ley-Koo and S. Mateos-Cortés: “Vibrational-Rotational Analysis of the Hulthen Potential Using Hydrogenic Eigenfunction Bases”, Rev. Mex. Fis., Vol. 44, (1998), pp. 413–419.
  • [23] F. Iachello and R.D. Levine: Algebraic Theory of Molecules, Oxford Univ. Press, New York, 1992.
  • [24] P.M. Morse and H. Feshbach: Methods of Theoretical Physics, Part I, McGraw-Hill Book Company, Inc., New York, 1953.
  • [25] C. V. Sukumar: “Supersymmetric Quantum Mechanics of One-Dimensional Systems”, J. Phys. A: Math. Gen., Vol. 18, (1985), pp. 2917–2936; C.V. Sukumar: “Supersymemtric Quantum Mechanics and Its Applications”, In: R. Bijker et al. (Eds.): Supersymmetries in physics and applications, AIP Proc., Vol. 744, New York, 2005, pp. 166–235.[Crossref]
  • [26] F. Cooper, A. Khare and U.P. Sukhatme: Supersymmetry in Quantum Mechanics, World Scientific, Singapore, 2001.
  • [27] G. Lévai: “A Search for Shape Invariant Solvable Potentials”, J. Phys. A: Math. Gen., Vol. 22, (1989), pp. 689–702.[Crossref]
  • [28] B. Bagchi and R. Roychoudhury: “A new PT-symmetric complex hamiltonian with a real spectrum”, J. Phys. A: Math. Gen., Vol. 33, (2000), L1–L3.[Crossref]
  • [29] W. Koepf and M. Masjed-Jamei: “A Generic Polynomial Solution for the Differential Equation of Hypergeometric Type and Six Sequences of Orthogonal Polynomials”, Integral Transforms and Special Functions, Vol. 17, (2006), pp. 559–576; M. Masjed-Jamei: “Classical Orthogonal Polynomials with Weight Function ((ax + b)2 + (cx + d)2)−p exp(q) arctan \(\tfrac{{ax + b}}{{cx + d}}x \in ( - \infty , + \infty )\) and Generalization of T and F Distributions”, Integral Transforms and Special Functions, Vol. 15, (2002), pp. 137–153.[Crossref]
  • [30] Particle Data Group, S. Eidelman et al.: “Review of Particle Physics”, Phys. Lett. B, Vol. 592, (2004), pp. 1–1109.[Crossref]
  • [31] M. Kirchbach: “On the parity degeneracy of baryons”, Mod. Phys. Lett. A, Vol. 12, (1997), pp. 2373–2386.[Crossref]
  • [32] M. Kirchbach, M. Moshinsky and Yu.F. Smirnov: “Baryons in O(4) and vibron model”, Phys. Rev. D, Vol. 64, (2001), art. 114005.
  • [33] E.P. Wigner: “Characteristic Vectors of Bordered Matrices with Infinite Dimensions”, Ann. Math., Vol. 62, (1955), pp. 548–564.[Crossref]
  • [34] N.S. Witte and P.J. Forrester: “Gap probabilities in the finite and scaled Caushy Random Matrix Ensambles”, Nonlinearity, Vol. 13, (2000), pp. 1965–1986; P.J. Forrester: Random Matrices in Log Gases, (book in preparation).[Crossref]
  • [35] C.A. Tracy and H. Widom: “Fredholm Determinants, Differential Eq1uations, and Matrix Models”, Commun. Math. Phys., Vol. 163, (1994), pp. 33–72.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.