Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 5 | 3 | 324-341
Tytuł artykułu

Confinement of polar optical phonons in quasi-one-dimensional Wurtzite GaN-based quantum well wires: propagating and half-space phonon modes

Treść / Zawartość
Warianty tytułu
Języki publikacji
With the aid of the macroscopic dielectric continuum and Loudon’s uniaxial crystal models, the propagating (PR) and half-space (HS) optical phonon modes and corresponding Fröhlich-like electron-phonon interaction Hamiltonians in a quasi-one-dimensionality (Q1D) wurtzite quantum well wire (QWW) structure are derived and studied. Numerical calculations on a wurtzite GaN/Al0.15Ga0.85N QWW are performed, and discussion is focused mainly on the dependence of the frequency dispersions of PR and HS modes on the free wave-number k z in the z-direction and on the azimuthal quantum number m. The calculated results show that, for given k z and m, there usually exist infinite branches of PR and HS modes in the high-frequency range, and only finite branches of HS modes in the low-frequency range in wurtzite QWW systems. The reducing behaviors of the PR modes to HS modes, and of the HS mode to interface phonon mode have been observed clearly in Q1D wurtzite heterostructures. Moreover, the dispersive properties of the PR and HS modes in Q1D QWWs have been compared with those in Q2D quantum well structures. The underlying physical reasons for these features have also been analyzed in depth.
Opis fizyczny
  • State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing, 100871, People’s Republic of China
  • [1] B. Gil: Group III Nitride Semiconductor Compounds, Clarendon Press, Oxford, 1998.
  • [2] S. Nakamura and S.F. Chichibu: Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, Taylor & Francis London, 2000.
  • [3] S. Baskoutas and A.F. Terzis: “Biexciton luminescence in InAs nanorods”, J. Appl. Phys., Vol. 98, (2005), art. 044309.
  • [4] H.J. Choi, J.C. Johnson, R. He, S.K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R.J. Saykally and P. Yang: “Self-organized GaN quantum wire UV lasers”, J. Phys. Chem. B, Vol. 107, (2003), pp. 8721–8725.[Crossref]
  • [5] A.V. Maslov and C.Z. Ning: “Band structure and optical absorption of GaN nanowires grown along the c axis”, Phys. Rev. B, Vol. 72, (2005), art. 125319.
  • [6] W.U. Huynh, J.J. Dittmer and A.P. Alivisatos: “Hybrid Nanorod-Polymer Solar Cells”, Science, Vol. 295, (2002), pp. 2425–2427.[Crossref]
  • [7] M. Krishna, S. Mukhopadhyay and A. Chatterjee: “Polaronic effects in asymmetric quantum wirea: an all-coupling variational approach”, Solid State Commun., Vol. 138, (2006), pp. 285–289.[Crossref]
  • [8] G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, L. Li, C.M. Mo and Y.Q. Mao: “Larges-cale synthesis of single crystalline gallium nitride nanowires”, Appl. Phys. Lett., Vol. 75, (1999), pp. 2455–2457.[Crossref]
  • [9] M.H. Huang, S. Mao, H. Fieck, H. Yan, Y. Wu, H. Kind, E. Weber, R. Richard and P. Yang: “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, Vol. 292, (2001), pp. 1893–1896.[Crossref]
  • [10] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.J. Choi and P. Yang: “Single crystal gallium nitride nanotubes”, Nature, Vol. 422, (2003), pp. 599–602.[Crossref]
  • [11] G. Chen, T. Zeng, T. Borca-Tasciuc and D. Song: “Phonon engineering in nanostructures for solid-state energy conversion”, Mater. Sci. Eng. A, Vol. 292, (2000), pp. 155–161.[Crossref]
  • [12] C.X. Xia and S.Y. Wei: “Hydrogenic impurity states in a wurtzite InGaN quantum dot”, Phys. Lett. A, Vol. 359, (2006), pp. 161–165.[Crossref]
  • [13] S.Y. Wei, X. Zhao, C.X. Xia, H.R. Wu, F. Zhang and W. Li: “Influence of the built-in electric field on luminescent properties in self-formed single InxGa1−x N/GaN quantum dots”, Physica E, Vol. 33, (2006), pp. 343–348.[Crossref]
  • [14] E.P. Pokatilov, D.L. Nika and A.A. Balandin: “Built-in field effect on the electron mobility in AlN/GaN/AlN quantum wells”, Appl. Phys. Lett., Vol. 89, (2006), art. 113508.
  • [15] H.L. Liu, C.C. Chen, C.T. Chia, C.C. Yeh, C.H. Chen, M.Y. Yu, S. Keller and S.P. DenBaars: “Infrared and Raman-scattering studies in single-crystalline GaN nanowires”, Chem. Phys. Lett., Vol. 345, (2001), pp. 245–251.[Crossref]
  • [16] J. Zhang, X.S. Peng, X.F. Wang, Y.W. Wang and L.D. Zhang: “Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH3”, Chem. Phys. Lett., Vol. 345, (2001), pp. 372–376.[Crossref]
  • [17] J. Zhang and L.D. Zhang: “Morphology and Raman scattering spectrum of GaN nanowires embedded in nanochannels of template”, J. Phys. D: Appl. Phys., Vol. 35, (2002), pp. 1481–1485.[Crossref]
  • [18] B.C. Lee, K.W. Kim, S.M. Stroscio and M. Dutta: “Optical-phonon confinement and scattering in wurtzite heterostructures”, Phys. Rev. B, Vol. 58, (1998), pp. 4860–4865.[Crossref]
  • [19] S.M. Komirenko, K.W. Kim, M.A. Stroscio and M. Dutta: “Dispersion of polar optical phonons in wurtzite quantum wells”, Phys. Rev. B, Vol. 59, (1999), pp. 5013–5020.[Crossref]
  • [20] J.J. Shi: “Interface optical-phonon modes and electron-interface-phonon interactions in wurtzite GaN/AlN quantum wells”, Phys. Rev. B, Vol. 68, (2003), art. 165335.
  • [21] J.J. Shi, X.L. Chu and E.M. Goldys: “Propagating optical-phonon modes and their electron-phonon interactions in wurtztie GaN/AlxGa1−x N quantum wells”, Phys. Rev. B, Vol. 70, (2004), art. 115318.
  • [22] L. Li, D. Liu and J.J. Shi: “Electron quasi-confined-optical-phonon interactions in wurtzite GaN/AlN quantum wells”, Eur. Phys. J. B, Vol. 44, (2005), pp. 401–413.[Crossref]
  • [23] L. Zhang and J.J. Shi: “Propagating optical phonon modes and their electron-phonon interaction Hamiltonians in asymmetrical wurtzite nitride semiconductor quantum wells”, Commun. Theor. Phys., Vol. 45, (2006), pp. 935–944.[Crossref]
  • [24] R. Fuchs and K.L. Kliewer: “Optical modes of vibration in an ionic crystal slab”, Phys. Rev., Vol. 140A, (1965), pp. 2076–2088; J. Licari and R. Evrard: “Electronphonon interaction in a dielectric slab: Effect of the electronic polarizability”, Phys. Rev. B, Vol. 15, (1977), pp. 2254–2264.[Crossref]
  • [25] L. Wendler: “Electron-phonon interaction in dielectric bilayer systems”, Phys. Stat. Sol. B, Vol. 129, (1985), pp. 513–530.
  • [26] L. Wendler, T. Haupt and V.G. Grigoryan: “Electron-phonon interaction, dynamical screening and collective excitations in heterostructures: I. Electron-phonon interaction”, Physica B, Vol. 167, (1990), pp. 91–99.[Crossref]
  • [27] R. Loudon: “The Raman effect in crystals”, Adv. Phys., Vol. 13, (1964), pp. 423–482.[Crossref]
  • [28] L. Zhang, J.J. Shi and T.L. Tansley: “Polar vibration spectra of interface optical phonons and electron-interface optical phonon interactions in a wurtzite GaN-AlN nanowire”, Phys. Rev. B, Vol. 71, (2005), art. 245324.
  • [29] L. Zhang and J.J. Shi: “Polar oscillation and dispersion properties of quasi-confined optical phonon mdoes in a wurtzite GaN/AlxGa1−x N nanowire”, Appl. Surf. Sci., Vol. 252, (2006), pp. 7815–7822.[Crossref]
  • [30] L. Zhang and J.J Shi: “Fröhlich electron-interface and-propagating optical phonon interactions in a wurtzite multi-shell cylindrical heterostructure”, Solid. State Commun., Vol. 138, (2006), pp. 47–52.[Crossref]
  • [31] P. Bordone and P. Logli: “Effect of half-space and interface phonons on the transport properties of AlxGa1−x As/GaAs single heterostructures”, Phys. Rev. B, Vol. 49, (1994), pp. 8178–8190.[Crossref]
  • [32] K. Huang and B.F. Zhu: “Dielectric continuum model and Fröhlich interaction in superlattices”, Phys. Rev. B, Vol. 38, (1988), pp. 13377–13386.[Crossref]
  • [33] A.K. Sood, J. Menendez, M. Cardona and K. Ploog: “Interface vibrational modes in GaAs-AlAs superlattices”, Phys. Rev. Lett., Vol. 54, (1985), pp. 2115–2118.[Crossref]
  • [34] E. Richter and D. Strauch: “Lattice dynamics of GaAs/AlAs superlattices”, Solid State Commun., Vol. 64, (1987), pp. 867–870.[Crossref]
  • [35] J. Gleize, F. Demangeot, J. Frandon, M.A. Renucci, M. Kuball, B. Daudin and N. Grandjean: “Inelastic Light Scattering by Phonons in Hexagonal GaN-AlN Nanostructures”, Phys. Stat. Sol. A, Vol. 183, (2001), pp. 157–161; J. Gleize, J. Frandon, Demangeot, M.A. Renucci, M. Kuball, J.M. Hayes, F. Widmann and B. Daudin: “Angular dispersion of polar phonons in a hexagonal GaN-AlN superlattice”, Mater. Sci. Eng. B, Vol. 82, (2001), pp. 27–29.<157::AID-PSSA157>3.0.CO;2-P[Crossref]
  • [36] H.J. Xie, C.Y. Chen and B.K. Ma: “The bound polaron in a cylindrical quantum well wire with a finite confining potential”, J. Phys.: Condens. Matter, Vol. 12, (2000), pp. 8623–8640.[Crossref]
  • [37] L. Zhang, H.J. Xie and C.Y. Chen: “The Fröhlich Electron-Phonon Interaction Hamiltonian in a Quantum Dot Quantum Well”, Phys. Rev. B, Vol. 66, (2002), art. 205326.
  • [38] J.J. Shi and S.H. Pan: “Polar optical oscillations in coupled quantum well: the electron-phonon interaction and scattering”, J. Appl. Phys., Vol. 80, (1996), pp. 3863–3875.[Crossref]
  • [39] Y.H. Zhu and J.J. Shi: “Polaron effects due to interface optical-phonons in wurtzite GaN/AlN quantum wells”, Phys. Stat. Sol. B, Vol. 242, (2005), pp. 1010–1021.[Crossref]
  • [40] H.J. Xie and X.Y. Liu: “Polarons in a cylindrical quantum well wire with finite confining potential”, Superlatt. Microstruc., Vol. 39, (2006), pp. 489–500.[Crossref]
  • [41] D. Liu, J.J. Shi and K.S.A. Butcher: “Impurity bound polaron in wurtzite GaN/GaN quantum well: the interface optical-phonon and the built-in electric field effects”, Superlatt. Mircostruc., Vol. 40, (2006), pp. 180–190.[Crossref]
  • [42] J.T. Lü and J.C. Cao: “Confined optical phonon modes and electron-phonon interactions in wurtzite GaN/ZnO quantum wells”, Phys. Rev. B, Vol. 71, (2005), art. 155304.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.