PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2007 | 5 | 1 | 35-48
Tytuł artykułu

Non-linear dynamics of spinodal decomposition in multi-component polymer systems. I. General approach

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spinodal decomposition of multi-component systems is analyzed within the framework of a new approach focusing on the description of this dynamic process in terms of the Langevin equation for the one-time structure factor S(q, t) treated as an independent dynamic object. We apply this approach, in particular, to multi-component incompressible polymer systems (binary polymer solutions, ternary polymer blends etc.). The dynamic equation describing the simultaneous relaxation of both the order parameters (component concentrations) and the matrix of the component-component dynamic correlation functions ∥S ij(q, t)∥, including the explicit expression for the corresponding effective kinetic coefficients, is derived.
Wydawca

Czasopismo
Rocznik
Tom
5
Numer
1
Strony
35-48
Opis fizyczny
Daty
wydano
2007-03-01
online
2007-03-01
Twórcy
Bibliografia
  • [1] J.W. Cahn and J.E. Hilliard: “Free energy of a nonuniform system. Interfacial free energy“, J. Chem. Phys., Vol. 28, (1958), pp. 258–267. http://dx.doi.org/10.1063/1.1744102[Crossref]
  • [2] H.E. Cook: “Brownian motion in spinodal decomposition“, Acta Met., (1970), Vol. 18, pp. 297–306. http://dx.doi.org/10.1016/0001-6160(70)90144-6[Crossref]
  • [3] P.J. De Gennes: “Dynamics of fluctuations and spinodal decomposition in polymer blends“, J. Chem. Phys., Vol. 72, (1980), pp. 4756–4763. http://dx.doi.org/10.1063/1.439809[Crossref]
  • [4] K. Binder: “Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures“, J. Chem. Phys., Vol. 79, (1983), pp. 6387–6409. http://dx.doi.org/10.1063/1.445747[Crossref]
  • [5] K. Binder: “Nucleation barriers, spinodals, and the Ginzburg criterion“, Phys. Rev. A, Vol. 29, (1984), pp. 341–348. http://dx.doi.org/10.1103/PhysRevA.29.341[Crossref]
  • [6] K. Binder: “Theory of first-order phase transitions“, Progr. Rep. Phys., Vol. 50, (1987), pp. 783–859. http://dx.doi.org/10.1088/0034-4885/50/7/001[Crossref]
  • [7] J.S. Langer, M. Bar-on and H.D. Miller: “New computational method in the theory of spinodal decomposition“, Phys. Rev. A, Vol. 11, (1975), pp. 1417–1429. http://dx.doi.org/10.1103/PhysRevA.11.1417[Crossref]
  • [8] J.E. Morral and J.W. Cahn: “Spinodal decomposition in ternary systems“, Acta Metall., Vol. 19, (1971), pp. 1037–1045. http://dx.doi.org/10.1016/0001-6160(71)90036-8[Crossref]
  • [9] J.J. Hoyt: “Spinodal decomposition in ternary alloys“, Acta Metall. Mater., Vol. 37, (1989), pp. 2489–2497. http://dx.doi.org/10.1016/0001-6160(89)90047-3[Crossref]
  • [10] J.J. Hoyt: “Linear spinodal decomposition in a regular ternary alloy“, Acta Metall. Mater., Vol. 38, (1990), pp. 227–231. http://dx.doi.org/10.1016/0956-7151(90)90052-I[Crossref]
  • [11] A.J. Bray: “Theory of phase-ordering kinetics“, Adv. Phys., Vol. 51, (2002), pp. 481–587 http://dx.doi.org/10.1080/00018730110117433[Crossref]
  • [12] A.V. Dobrynin and I.Ya. Erukhimovich: “Fluctuation effects in the theory of weak supercrystallization in block copolymer systems of complicated chemical structure“, J. Phys. II France, Vol. 1, (1991), pp. 1387–1404. http://dx.doi.org/10.1051/jp2:1991147[Crossref]
  • [13] E. Prostomolotova, I. Erukhimovich: “Non-linear dynamics of spinodal decomposition“, Macromol. Symp., Vol. 160, (2000), pp. 215–223. http://dx.doi.org/10.1002/1521-3900(200010)160:1<215::AID-MASY215>3.0.CO;2-D[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-006-0042-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.