Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 4 | 4 | 448-460
Tytuł artykułu

Towards relativistic ECP / DFT description of chemical bonding in E112 compounds: spin-orbit and correlation effects in E112X versus HgX (X=H, Au)

Treść / Zawartość
Warianty tytułu
Języki publikacji
The relativistic effective core potential (RECP) approach combined with the spin-orbit DFT electron correlation treatment was applied to the study of the bonding of eka-mercury (E112) and mercury with hydrogen and gold atoms. Highly accurate small-core shape-consistent RECPs derived from Hartree-Fock-Dirac-Breit atomic calculations with Fermi nuclear model were employed. The accuracy of the DFT correlation treatment was checked by comparing the results in the scalar-relativistic (spin-orbit-free) limit with those of high level scalar-relativistic correlation calculations within the same RECP model. E112H was predicted to be slightly more stable than its lighter homologue (HgH). The E112-Au bond energy is expected to be ca. 25–30 % weaker than that of Hg-Au. The role of correlations and magnetic (spin-dependent) interactions in E112-X and Hg-X (X=H, Au) bonding is discussed. The present computational procedure can be readily applied to much larger systems and seems to be a promising tool for simulating E112 adsorption on metal surfaces.

Opis fizyczny
  • Photochemistry Center, Russian Academy of Sciences, Moscou, 117421, Russia
  • Petersburg Nuclear Physics Institute, Gatchina, St.-Petersburg district, 188300, Russia
  • Petersburg Nuclear Physics Institute, Gatchina, St.-Petersburg district, 188300, Russia
  • [1] W.-J. Liu, G.-Y. Hong, D.-D. Dai, L.-M. Li and M. Dolg: “The Beijing four-component density functional program package (BDF) and its applications to EuO, EuS, YbO and YbS”, Theor. Chim. Acta, Vol. 96, (1997), pp. 75–83.
  • [2] S. Varga, B. Fricke, H. Nakamatsu, T. Mukoyama, J. Anton, D. Geschke, A. Heitmann, E. Engel and T. Baştuğ: “Four-component relativistic density functional calculations of heavy diatomic molecules”, J. Chem. Phys., Vol. 112, (2000), pp. 3499–3506.[Crossref]
  • [3] J. Anton, B. Fricke and P. Schwerdtfeger: “Non-collinear and collinear four-component relativistic molecular density functional calculations”, Chem. Phys., Vol. 311, (2005), pp. 97–103.[Crossref]
  • [4] V. Pershina: “Theoretical predictions of properties and chemical behavior of superheavy elements”, J. Nucl. Radiochem. Sciences, Vol. 3, (2002), pp. 137–141.
  • [5] V. Pershina, T. Bastug, C. Sarpe-Tudoran, J. Anton and B. Fricke: “Predictions of adsorption behaviour of the superheavy element 112”, Nucl. Phys. A, Vol. 734, (2004), pp. 200–203.[Crossref]
  • [6] C. Sarpe-Tudoran, V. Pershina, B. Fricke, J. Anton, W.-D. Sepp and T. Jacob: “Adsorption of super-heavy elements on metal surfaces”, Eur. Phys. J. D, Vol. 24, (2003), pp. 65–67.[Crossref]
  • [7] T. Straatsma, E. Apra, T. Windus, M. Dupuis, E. Bylaska, W. de Jong, S. Hirata, D. Smith, M. Hackler, L. Pollack, R. Harrison, J. Nieplocha, V. Tipparaju, M. Krishnan, E. Brown, G. Cisneros, G. Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. Nichols, K. Tsemekhman, M. Valiev, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang: NWCHEM, a Computational Chemistry Package for Parallel Computers, Version 4.5, 2003.
  • [8] Y.J. Choi and Y.S. Lee: “Spin-orbit density functional theory calculations for heavy metal monohydrides”, J. Chem. Phys., Vol. 119, (2003), pp. 2014–2019.[Crossref]
  • [9] V. Vallet, L. Maron, C. Teichteil and J.-P. Flament: “A two-step uncontracted determinantal effective Hamiltonian-based SO-CI method”, J. Chem. Phys., Vol. 113, (2000), pp. 1391–1402.[Crossref]
  • [10] A. Zaitsevskii, R. Ferber and C. Teichteil: “Quasirelativistic transition property calculations by the intermediate Hamiltonian method: Electronic transition dipole moments and radiative lifetimes in Te2”, Phys. Rev. A, Vol. 63, (2001), art. 042511.
  • [11] S. Yabushita, Z.-Y. Zhang and R.M. Pitzer: “Spin-orbit configuration interaction using the graphical unitary group approach and relativistic core potential and spin-orbit operators”, J. Phys. Chem. A, Vol. 103, (1999), pp. 5791–5800.[Crossref]
  • [12] M. Schädel: “Chemistry of superheavy elements”, Angew. Chem. Int. Ed., Vol. 45, (2006), pp. 368–401.[Crossref]
  • [13] U. Kaldor, E. Eliav and A. Landau: “Study of heavy elements by relativistic fock-space and intermediate hamiltonian coupled cluster methods”, in: E. J. Brandas and E. S. Kryachko (Eds.): Fundamental World of Quantum Chemistry, Vol. III, Kluwer Academic Publishers, Dordrecht, 2004, pp. 365–406.
  • [14] K.S. Pitzer: “Are elements 112, 114, and 118 relatively inert gases?”, J. Chem. Phys., Vol. 63, (1975), pp. 1032–1033.
  • [15] N.S. Mosyagin, T.A. Isaev and A.V. Titov: “Is E112 a relatively inert element? Benchmark relativistic correlation study of spectroscopic constants in E112H and its cation”, J. Chem. Phys., Vol. 124, (2006), art. 224302.
  • [16] A. Yakushev, I. Zvara, Y.T. Oganessian et al.: “Chemical identification and properties of element 112”, Radiochim. Acta, Vol. 91, (2003), pp. 433–439.[Crossref]
  • [17] S. Soverna, R. Dressler, C.E. Düllmann et al.: “Thermochromatographic studies of mercury and radon on transition metal surfaces”, Radiochim. Acta, Vol. 93, (2005), pp. 1–8.[Crossref]
  • [18] Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov et al.: “Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca”, Phys. Rev. C, Vol. 70, (2004), art. 064609.
  • [19] K.E. Gregorich, W. Loveland, D. Peterson et al.: “Attempt to confirm superheavy element production in the 48Ca+238U reaction”, Phys. Rev. C, Vol. 72, (2005), art. 014605.
  • [20] N.S. Mosyagin, A.V. Titov and Z. Latajka: “Generalized relativistic effective core potential: Gaussian expansions of potentials and pseudospinors for atoms Hg through Rn”, Int. J. Quantum Chem., Vol. 63, (1997), pp. 1107–1122.<1107::AID-QUA4>3.0.CO;2-0[Crossref]
  • [21] N.S. Mosyagin, A.N. Petrov, A.V. Titov and I.I. Tupitsyn: “GRECPs accounting for Breit effects in uranium, plutonium and superheavy elements 112, 113, 114”, In: Recent Advances in the Theory of Chemical and Physical Systems, Vol. 15 of Progr. Theor. Chem. Phys. (2006), arXiv: physics/ 0505207.
  • [22] A.V. Titov and N.S. Mosyagin: “Generalized relativistic effective core potential: Theoretical grounds”, Int. J. Quantum Chem., Vol. 71, (1999), pp. 359–401.<359::AID-QUA1>3.0.CO;2-U[Crossref]
  • [23] I.I. Tupitsyn, N.S. Mosyagin and A.V. Titov: “Generalized relativistic effective core potential. I. Numerical calculations for atoms Hg through Bi”, J. Chem. Phys., Vol. 103, (1995), pp. 6548–6555.[Crossref]
  • [24] A.N. Petrov, N.S. Mosyagin, A.V. Titov and I. I. Tupitsyn: “Accounting for the Breit interaction in relativistic effective core potential calculations of actinides”, J. Phys. B, Vol. 37, (2004), pp. 4621–4637.[Crossref]
  • [25] W.C. Ermler, R.B. Ross and P.A. Christiansen: “Spin-orbit coupling and other relativistic effects in atoms and molecules”, Adv. Quantum Chem., Vol. 19, (1988), pp. 139–182.[Crossref]
  • [26] N.S. Mosyagin and A.V. Titov: 19-electron generalized RECP for Au: generation and test calculations, Petersburg Nuclear Physics Institute, Gatchina, 2006,
  • [27] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople: GAUSSIAN 03, Rev. C.02, 2003, electronic structure modeling program.
  • [28] P.G. Szalay and R.J. Bartlett: “Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis”, J. Chem. Phys., Vol. 103, (1995), pp. 3600–3612.[Crossref]
  • [29] R. Shepard, I. Shavitt, R. Pitzer, D. Comeau, M. Pepper, H. Lischka, P. Szalay, R. Ahlrichs, F. Brown, and J. Zhao: “A progress report on the status of the columbus mrci program system”, Int. J. Quantum Chem.: Quantum Chem. Symp., Vol. 34(S22), (1988), pp. 149–165.[Crossref]
  • [30] H. Lischka, R. Shepard, I. Shavitt, R.M. Pitzer, M. Dallos, T. Müller, P.G. Szalay, F.B. Brown, R. Ahlrichs, H. Böhm, A. Chang, D. Comeau, R. Gdanitz, H. Dachsel, C. Ehrhardt, M. Ernzerhof, P. Höchtl, G.K. S. Irle, T. Kovar, V. Parasuk, M. Pepper, P. Scharf, H. Schiffer, M. Schindler, M. Schüler, M. Seth, E. Stahlberg, J.-G. Zhao, S. Yabushita and Z. Zhang: COLUMBUS, version 5.8, 2001, Ab-initio electronic structure program.
  • [31] D. Figgen, G. Rauhut, M. Dolg and H. Stoll: “Energy consistent pseudopotentials for group 11 and group 12 atoms: Adjustment to multi-configuration Dirac-Hartree-Fock data”, Chem. Phys., Vol. 311, (2005), pp. 227–244.[Crossref]
  • [32] M. Seth, P. Schwerdtfeger and M. Dolg: “The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2, and (112)F4”, J. Chem. Phys., Vol. 106, (1997), pp. 3623–3632.[Crossref]
  • [33] D.E. Woon and T.H. Dunning, Jr: “Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties”, J. Chem. Phys., Vol. 100, (1994), pp. 2975–2988.[Crossref]
  • [34] H.L. Schmider and A.D. Becke: “Optimized density functionals from the extended G2 test set”, J. Chem. Phys., Vol. 108, (1998), pp. 9624–9631.
  • [35] A. Becke: “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys., Vol. 98, (1993), pp. 5648–5652.[Crossref]
  • [36] C. Adamo and V. Barone: “Toward reliable density functional methods without adjustable parameters: The PBE0 model”, J. Chem. Phys., Vol. 110, (1999), pp. 6158–6170.[Crossref]
  • [37] G. Herzberg: Spectra of Diatomic Molecules, Molecular spectra and Molecular structure, Van Nostrand-Reinhold, New York, 1950.
  • [38] W. C. Stwalley: “Mass-reduced quantum numbers: Application to the isotopic mercury hydrides”, J. Chem. Phys., Vol. 63, (1975), pp. 3062–3080.[Crossref]
  • [39] J. Dufayard, B. Majournat and O. Nedelec: “Predissociation of HgH A 2Π1/2 by inner crossing with X 2Σ+”, Chem. Phys., Vol. 128, (1988), pp. 537–547.[Crossref]
  • [40] N.S. Mosyagin, A.V. Titov, R.J. Buenker, H.-P. Liebermann and A.B. Alekseyev: “GRECP/MRD-CI calculations on the Hg atom and HgH molecule”, Int. J. Quantum Chem., Vol. 88, (2002), pp. 681–686.[Crossref]
  • [41] R. Wesendrup and P. Schwerdtfeger: “Extremely strong s 2-s 2 closed-shell interactions”, Angew. Chem. Int. Ed., Vol. 39, (2000), pp. 907–910.<907::AID-ANIE907>3.0.CO;2-M[Crossref]
  • [42] A.D. Becke: “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A, Vol. 38, (1988), pp. 3098–3100.[Crossref]
  • [43] J.P. Perdew: “Density functional approximation for the correlation energy of the inhomogeneous electron gas”, Phys. Rev. B, Vol. 33, (1986), pp. 8822–8824.[Crossref]
  • [44] A.B. Alekseyev, H.-P. Liebermann and R.J. Buenker: “Spin-orbit multireference configuration interaction method and applications to systems containing heavy atoms”, In: K. Hirao and Y. Ishikawa (Eds.): Recent Advances in Relativistic Molecular Theory, World Scientific, Singapore, 2004, pp. 65–105.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.