Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 4 | 3 | 393-404
Tytuł artykułu

Small damping approach in Fermi-liquid theory

Treść / Zawartość
Warianty tytułu
Języki publikacji
The validity of the small damping approximation (SDA) for the quasi-classical description of the averaged properties of nuclei at high temperatures is studied within the framework of collisional kinetic theory. The isoscalar collective quadrupole vibrations in hot nuclei are considered. We show that the extension of the SDA, by accounting for the damping of the distribution function δ f in the collision integral, reduces the rate of variation of distortion effects of the Fermi surface with temperature. The damping of the δ f in the collision integral increases the collisional width of the giant quadrupole resonance (GQR) significantly for small enough values of the relaxation time. The temperature dependence of the eigenenergy of the GQR becomes much weaker than in the corresponding SDA case.

Opis fizyczny
  • Cyclotron Institute, Texas A&M University, College Station, Texas, 77843, USA,
  • [1] K.A. Snover: “The giant dipole resonance at high excitation energy and spin”, Nucl. Phys., Vol. A553, (1993), pp. 153–171.
  • [2] A. Bracco et al.: “Increase in Width of the Giant Dipole Resonance in Hot Nuclei: Shape Change or Collisional Damping?”, Phys. Rev. Lett., Vol. 74, (1995), pp. 3748–3751.[Crossref]
  • [3] W.E. Ormand, P.F. Bortignon, R.A. Broglia and A. Bracco: “Behavior of the giant-dipole resonance in 120Sn and 208Pb at high excitation energy”, Nucl. Phys., Vol. A614, (1997), pp. 217–237.
  • [4] F.V. De Blassio, W. Cassing, M. Tohyama, P.F. Bortignon and R.A. Broglia: “Nonperturbative study of the damping of giant resonances in hot nuclei”, Phys. Rev. Lett., Vol. 68, (1992), pp. 1663–1666.[Crossref]
  • [5] V.M. Kolomietz, V.A. Plujko and S. Shlomo: “Interplay between one-body and collisional damping of collective motion in nuclei”, Phys. Rev., Vol. C54, (1996), pp. 3014–3024.
  • [6] N.D. Dang and A. Arima: “Quantal and thermal dampings of giant dipole resonances in 90Zr, 120Sn, and 208Pb”, Phys. Rev. Lett., Vol. 80, (1998), pp. 4145–4148.[Crossref]
  • [7] J.J. Gaardhoje: “Nuclear structure at high excitation energy studied with giant resonances”, Annu. Rev. Nucl. Part. S., Vol. 42, (1992), pp. 483–536.[Crossref]
  • [8] G. Enders et al.: “Excitation-energy dependence of the giant dipole resonance width”, Phys. Rev. Lett., Vol. 69, (1992), pp. 249–252.[Crossref]
  • [9] Cai Yanhuang and M. Di Toro: “Semiclassical description of isovector giant multipole resonances”, Phys. Rev., Vol. C39, (1989), pp. 105–113.
  • [10] A. Smerzi, A. Bonasera and M. Di Toro: “Damping of giant resonances in hot nuclei”, Phys. Rev., Vol. C44, (1991), pp. 1713–1716.
  • [11] R.W. Hasse: “Fission of heavy nuclei at higher excitation energies in a dynamic model”, Phys. Rev., Vol. C4, (1971), pp. 572–580.
  • [12] S. Ayik and D. Boiley: “Damping of collective vibrations in a memory-dependent transport model”, Phys. Lett., Vol. B276, (1992), pp. 263–268
  • [13] C. Wong and N. Azziz: “Dynamics of nuclear fluid. VI. Nuclear giant resonances as elastic vibrations”, Phys. Rev., Vol. C24, (1981), pp. 2290–2310.
  • [14] P.-G. Reinhard, H.L. Yadav and C. Toepffer: “Damping of giant resonances in a stochastic two-level model”, Nucl. Phys., Vol. A458, (1986), pp. 301–336.
  • [15] V.G. Solovjov: Theory of Atomic Nucleus, Quasipaticles and Phonons, Energoatomizdat, Moscow, 1989) (in Russian).
  • [16] A.J. Sierk, S.E. Koonin and J.R. Nix: “Modified one-body nuclear dissipation”, Phys. Rev., Vol. C17, (1978), pp. 646–653.
  • [17] V.M. Kolomietz and S. Shlomo: “Nuclear Fermi-liquid drop model”, Phys. Rep., Vol. 390, (2004), pp. 133–233.[Crossref]
  • [18] E.M. Lifshitz and L.P. Pitaevsky: Physical Kinetics, Pergamon Press, Oxford-New York-Seoul-Tokyo, 1993.
  • [19] G. Baym and C.J. Pethick: Landau Fermi Liquid Theory, J. Wiley & Sons, New York, 1991.
  • [20] A.A. Abrikosov and I.M. Khalatnikov: “The theory of a Fermi liquid”, Rep. Prog. Phys., Vol. 22, (1959), pp. 329–367.[Crossref]
  • [21] V.M. Kolomietz and H.H.K. Tang: “Microscopic and macroscopic aspects of nuclear dynamics in mean-field approximation”, Phys. Scripta, Vol. 24, (1981), pp. 915–924. [Crossref]
  • [22] V.M. Kolomietz, A.G. Magner and V.A. Plujko: “The retardation effects in collision integral”, Nucl. Phys., Vol. A545, (1992), pp. 99–104.
  • [23] D. Kiderlen, V.M. Kolomietz and S. Shlomo: “Nuclear shape fluctuations in Fermiliquid drop model”, Nucl. Phys., Vol. A608, (1996), pp. 32–48.
  • [24] G. Bertsch: “The collision integral in nuclear matter at zero temperature”, Zeitschrift für Physik, Vol. A289, (1978), pp. 103–105.
  • [25] V.M. Kolomietz, V.A. Plujko and S. Shlomo: “Collisional damping in heated nuclei within the Landau-Vlasov kinetic theory”, Phys. Rev., Vol. C52, (1995), pp. 2480–2487.
  • [26] L.D. Landau: “The theory of a Fermi liquid”, Soviet Physics JETP, Vol. 3, (1957), pp. 920–925.
  • [27] V.M. Kolomietz, S.V. Lukyanov, V.A. Plujko and S. Shlomo: “Collisional relaxation of collective motion in a finite Fermi liquid”, Phys. Rev., Vol. C58, (1998), pp. 198–208.
  • [28] P. Ring and P. Schuck: The Nuclear Many-Body Problem, Springer-Verlag, New-York, 1980.
  • [29] A. Bohr and B.R. Mottelson: Nuclear Structure, Benjamin, New York, 1975.
  • [30] P. Bonche, S. Levit and D. Vautherin: “Statistical properties and stability of hot nuclei”, Nucl. Phys., Vol. A436, (1985), pp. 265–293.
  • [31] S. Levit and P. Bonche: “Coulomb instability in hot compound nuclei approaching liquid-gas transition”, Nucl. Phys., Vol. A437, (1985), pp. 426–442.
  • [32] J.N. De, N. Rudra, S. Pal and S.K. Samaddar: “Refined Thomas-Fermi description of hot nuclei”, Phys. Rev., Vol. C53, (1996), pp. 780–789.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.