Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 4 | 3 | 405-416
Tytuł artykułu

A virtual instrumentation based protocol for the automated implementation of the inner field compensation method

Treść / Zawartość
Warianty tytułu
Języki publikacji
One influential parameter which mediates interactions between many types of molecules and biological membranes stems from the lumped contributions of the transmembrane potential, dipole potential and the difference in the surface potentials on both sides of a membrane. With relevance to cell physiology, such electrical features of a biomembrane are prone to undergoing changes as a result of interactions with the aqueous surrounding. Among the most useful tools devoted to exploring changes of electrical parameters of a lipid membrane induced by certain extracellular ions, lipid composition, and embedded membrane peptides and proteins, are spectroscopic imaging and the inner field compensation (IFC) method. In this work we layout the principles of a fully computerized version of the IFC method, which makes it more readily available to users. As a direct application, we deployed this improved version of the IFC method to time-resolve changes induced by alamethicin monomers upon membrane dipole potential, following their aggregation within an artificial lipid membrane. Intriguingly, even prior crossing the membrane core, the membrane-bound alamethicin monomers are shown to significantly increase the dipole potential of the monolayer they reside in. Such data further emphasize the yet less-explored interplay between membrane-based protein and peptides, and the membrane dipole potential.

Opis fizyczny
  • Dept. of Biophysics and Medical Physics, Faculty of Physics, ‘Alexandru I. Cuza’ University, Iasi, Romania, R-6600
  • Dept. of Biophysics and Medical Physics, Faculty of Physics, ‘Alexandru I. Cuza’ University, Iasi, Romania, R-6600,
  • [1] D.L. Nelson and M.M. Cox: “Lehninger Principles of Biochemistry, Fourth Edition”, W. H. Freeman, 2004.
  • [2] J.C. Franklin and D.S. Cafiso: “Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles”, Biophys. J., Vol. 65, (1993), pp. 289–299.
  • [3] G. Cevc: “Membrane electrostatics”, Biochim. Biophys. Acta, Vol. 1031, (1990), pp. 311–382.
  • [4] C. Zheng and G. Vanderkooi: “Molecular origin of the internal dipole potential in lipid bilayers: calculation of the electrostatic potential”, Biophys. J., Vol. 63, (1992), pp. 935–941.
  • [5] K. Gawrisch, D. Ruston, J. Zimmerberg, A. Parsegian, R.P. Rand and N. Fuller: “Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces”, Biophys. J., Vol. 61, (1992), pp. 1213–1223.
  • [6] S. McLaughlin: “The electrostatic properties of membranes”, Annu. Rev. Biophys. Biophys. Chem., Vol. 18, (1989), pp. 113–136.[Crossref]
  • [7] S.H. White, A.S. Ladokhin, S. Jayasinghe and K. Hristova: “How membranes shape protein structure”, J. Biol. Chem., Vol. 276, (2001), pp. 32395–32398.[Crossref]
  • [8] T.L. Rokitskaya, Y.N. Antonenko and E.A. Kotova: “Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics”, Biophys. J., Vol. 73, (1997), pp. 850–854.
  • [9] B. Maggio: “Modulation of phospholipase A2 by electrostatic fields and dipole potential of glycosphingolipids in monolayers”, J. Lipid Res., Vol. 40, (1999), pp. 930–939.
  • [10] I. Tatyana, T.Y. Rokitskaya, E.A. Kotova and Y.N. Antonenko: “Membrane Dipole Potential Modulates Proton Conductance through Gramicidin Channel: Movement of Negative Ionic Defects inside the Channel”, Biophys. J., Vol. 82, (2002), pp. 865–873.
  • [11] J. Cladera and P. O’shea: “Intramembrane molecular dipoles affect the membrane insertion and folding of a model amphiphilic peptide”, Biophys. J., Vol. 74, (1998), pp. 2434–2442.
  • [12] J. Cladera, I. Martin, J.M. Ruysschaert and P. O’shea: “Characterization of the sequence of interactions of the fusion domain of the simian immunodeficiency virus with membranes. Role of the membrane dipole potential”, J. Biol. Chem., Vol. 274, (1999), pp. 29951–29959.[Crossref]
  • [13] G. Beschiaschvili and J. Seelig: “Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes”, Biochemistry, Vol. 29, (1990), pp. 52–58.[Crossref]
  • [14] C.E. Dempsey and A. Watts: “A deuterium and phosphorus-31 nuclear magnetic resonance study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A2”, Biochemistry, Vol. 18, (1987), pp. 5803–5811.
  • [15] S. Leonor, S. Bandyopadhyay and M.L. Klein: “Effect of the Pore Region of a Transmembrane Ion Channel on the Physical Properties of a Simple Membrane”, J. Phys. Chem. B, Vol. 108, (2004), pp. 2608–2613.[Crossref]
  • [16] T. Hianik and V.I. Passechnik: Bilayer Lipid Membranes: Structure and Mechanical Properties, Kluwer Academic Publishers, The Netherlands, 1995.
  • [17] S.O. Hagge, A. Wiese, U. Seydel and T. Gutsmann: “Inner Field Compensation as a Tool for the Characterization of Asymmetric Membranes and Peptide-Membrane Interactions”, Biophys. J., Vol. 86, (2004), pp. 913–922.
  • [18] W. Carius: “Voltage dependence of bilayer membrane capacitance harmonic response to ac excitation with dc bias”, J. Colloid Interface Sci., Vol. 57, (1976), pp. 301–307.[Crossref]
  • [19] V.S. Sokolov and V.G. Kuzmin: “Measurement of differences in the surface potentials of bilayer membranes according to the second harmonic of a capacitance current”, Biofizika, Vol. 25(1), (1980), pp. 170–172.
  • [20] P. Pohl, T.I. Rokitskaya, E.E. Pohl and S.M. Saparov: “Permeation of phloretin across bilayer lipid membranes monitored by dipole potential and microelectrode measurements”, Biochim. Biophys. Acta, Vol. 1323, (1997), pp. 163–172.[Crossref]
  • [21] T. Luchian, S.H. Shin and H. Bayley: “Single-molecule chemistry with spatially separated reactants”, Angew. Chem. Int. Ed., Vol. 42, (2003), pp. 3766–3771.[Crossref]
  • [22] T. Luchian: “An automated method for generating analogic signals that embody the Markov kinetics of model ionic channels”, J. Neuroscience Meth., Vol. 147, (2005), pp. 8–14.[Crossref]
  • [23] O.S. Andersen, A. Finkelstein, I. Katz and A. Cass: “Effect of phloretin on the permeability of thin lipid membranes”, J.Gen.Physiol., Vol. 67, (1976), pp. 749–771.[Crossref]
  • [24] R. Yantorno, S. Takashima and P. Mueller: “Dipole moments of alamethicin as related to voltage-dependent conductance in lipid bilayers”, Biophys. J., Vol. 38, (1982), pp. 105–110.
  • [25] M.S. Sansom, I.D. Kerr and I.R. Mellor: “Ion channels formed by amphipathic helical peptides, a molecular modeling study”, Eur. Biophys. J., Vol. 20, (1991), pp. 229–240.[Crossref]
  • [26] M. Madhusoodanan and T. Lazaridis: “Voltage-dependent energetics of alamethicin monomers in the membrane”, Biophysical Chem., Vol. 122, (2006), pp. 50–57.[Crossref]
  • [27] S.D. Zakharov, T.I. Rokitskaya, V.L. Shapovalov, Y.N. Antonenko and W.A. Cramer: “Tuning the membrane surface potential for efficient toxin import”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 8654–8659.
  • [28] L. Saiz and M.L. Klein: “Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations”, J. Chem. Phys., Vol. 116, (2002), pp. 3052–3057.[Crossref]
  • [29] V.L. Shapovalov, E.A. Kotova, T.I. Rokitskaya and Y.N. Antonenko: “Effect of Gramicidin A on the Dipole Potential of Phospholipid Membranes”, Biophys. J., Vol. 77, (1999), pp. 299–305.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.