PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2006 | 4 | 3 | 349-362
Tytuł artykułu

Rate-equation calculations of the current flow through two-site molecular device and DNA-based junction

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Here we present the calculations of incoherent current flowing through the two-site molecular device as well as the DNA-based junction within the rate-equation approach. Selected phenomena of interest are discussed in detail. The structural asymmetry of a two-site molecule results in a rectification effect, which can be neutralized by an asymmetric voltage drop at the molecule-metal contacts due to coupling asymmetry. The results received for the poly(dG)-poly(dC) DNA molecule reveal the coupling-and temperature-independent saturation effect of the current at high voltages, establishing for short chains the inverse square distance dependence. Additionally we document the conductance peak shifting in the direction of higher voltages due to a temperature decrease.
Wydawca

Czasopismo
Rocznik
Tom
4
Numer
3
Strony
349-362
Opis fizyczny
Daty
wydano
2006-09-01
online
2006-09-01
Twórcy
  • Institute of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland, walczak@amu.edu.pl
Bibliografia
  • [1] J.D. Watson and F.H.C. Crick: “A structure for deoxyribose nucleic acid”, Nature (London), Vol. 171, (1953), pp. 737–738. http://dx.doi.org/10.1038/171737a0[Crossref]
  • [2] M.A. Ratner: “Electronic motion in DNA”, Nature (London), Vol. 397, (1999), pp. 480–481. http://dx.doi.org/10.1038/17232[Crossref]
  • [3] C. Dekker and M.A. Ratner: “Electronic properties of DNA”, Phys. World, Vol. 14, (2001), pp. 29–34.
  • [4] V. Bhalla, R.P. Bajpai and L.M. Bharadwaj: “DNA electronics”, EMBO reports, Vol. 4, (2003), pp. 442–445. http://dx.doi.org/10.1038/sj.embor.embor834[Crossref]
  • [5] R.G. Endres, D.L. Cox and R.R.P. Singh: “Colloquium: the quest for high-conductance DNA”, Rev. Mod. Phys., Vol. 76, (2004), pp. 195–214. http://dx.doi.org/10.1103/RevModPhys.76.195[Crossref]
  • [6] M. Di Ventra and M. Zwolak: “DNA electronics”, In: H.S. Nalwa (Eds.): Encyclopedia of Nanoscience and Nanotechnology, Vol. 2, Am. Sci. Publ., 2004, pp. 475–494.
  • [7] E. Braun, Y. Eichen, U. Sivan and G. Ben-Yoseph: “DNA-templated assembly and electrode attachment of a conducting silver wire”, Nature (London), Vol. 391, (1998), pp. 775–778. http://dx.doi.org/10.1038/35826[Crossref]
  • [8] P.J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gómez Herrero, P. Herrero, A.M. Baró, P. Ordejón, J.M. Soler and E. Artacho: “Absence of dc-conductivity in λ-DNA”, Phys. Rev. Lett., Vol. 85, (2000), pp. 4992–4995. http://dx.doi.org/10.1103/PhysRevLett.85.4992[Crossref]
  • [9] A.J. Storm, J. van Noort, S. de Vries and C. Dekker: “Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale”, Appl. Phys. Lett., Vol. 79, (2001), pp. 3881–3883. http://dx.doi.org/10.1063/1.1421086[Crossref]
  • [10] Y. Zhang, R.H. Austin, J. Kraeft, E.C. Cox and N.P. Ong: “Insulating behavior of λ-DNA on the micron scale”, Phys. Rev. Lett., Vol. 89, (2002), art. 198102.
  • [11] S. Tuukkanen, A. Kuzyk, J.J. Toppari, V.P. Hytönen, T. Ihalainen and P. Törmä: “Dielectrophoresis of nanoscale double-stranded DNA and humidity effects on its electrical conductivity”, Appl. Phys. Lett., Vol. 87, (2005), art. 183102.
  • [12] D. Porath, A. Bezryadin, S. De Vries and C. Dekker: “Direct measurement of electrical transport through DNA molecules”, Nature (London), Vol. 403, (2000), pp. 635–638. http://dx.doi.org/10.1038/35001029[Crossref]
  • [13] A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A.S. Vedeneev, J.S. Lee and J.M. Xu: “Metallic conduction through engineered DNA: DNA nanoelectronic building blocks”, Phys. Rev. Lett., Vol. 86, (2001), pp. 3670–3673. http://dx.doi.org/10.1103/PhysRevLett.86.3670[Crossref]
  • [14] H. Watanabe, C. Manabe, T. Shigematsu, K. Shimotani and M. Shimizu: “Single molecule DNA device measured with triple-probe atomic force microscope”, Appl. Phys. Lett., Vol. 79, (2001), pp. 2462–2464. http://dx.doi.org/10.1063/1.1408604[Crossref]
  • [15] J.S. Hwang, K.J. Kong, D. Ahn, G.S. Lee, D.J. Ahn and S.W. Hwang: “Electrical transport through 60 base pairs of poly(dG)-poly(dC) DNA molecules”, Appl. Phys. Lett., Vol. 81, (2002), pp. 1134–1136. http://dx.doi.org/10.1063/1.1498862[Crossref]
  • [16] H. Cohen, C. Nogues, R. Naaman and D. Porath: “Direct measurement of electrical transport through single DNA molecules of complex sequence”, Proc. Natl. Acad. Sci. USA, Vol. 102, (2005), pp. 11589–11593. http://dx.doi.org/10.1073/pnas.0505272102[Crossref]
  • [17] H.-W. Fink and C. Schönenberger: “Electrical conduction through DNA molecules”, Nature (London), Vol. 398, (1999), pp. 407–410. http://dx.doi.org/10.1038/18855[Crossref]
  • [18] L. Cai, H. Tabata and T. Kawai: “Self-assembled DNA networks and their electrical conductivity”, Appl. Phys. Lett., Vol. 77, (2000), pp. 3105–3106. http://dx.doi.org/10.1063/1.1323546[Crossref]
  • [19] P. Tran, B. Alavi and G. Gruner: “Charge transport along λ-DNA double helix”, Phys. Rev. Lett., Vol. 85, (2000), pp. 1564–1567. http://dx.doi.org/10.1103/PhysRevLett.85.1564[Crossref]
  • [20] K.-H. Yoo, D.H. Ha, J.-O. Lee, J.W. Park, J. Kim, J.J. Kim, H.-Y. Lee, T. Kawai and H.Y. Choi: “Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules”, Phys. Rev. Lett., Vol. 87, (2001), art. 198102.
  • [21] D.H. Ha, H. Nham, K.-H. Yoo, H. So, H.-Y. Lee and T. Kawai: “Humidity effects on the conductance of the assembly of DNA molecules”, Chem. Phys. Lett., Vol. 355, (2002), pp. 405–409. http://dx.doi.org/10.1016/S0009-2614(02)00142-2[Crossref]
  • [22] B. Hartzell, B. McCord, D. Asare, H. Chen, J.J. Heremans and V. Soghomonian: “Comparative current-voltage characteristics of nicked and repaired λ-DNA”, Appl. Phys. Lett., Vol. 82, (2003), pp. 4800–4802. http://dx.doi.org/10.1063/1.1588738[Crossref]
  • [23] B. Xu, P. Zhang, X. Li and N. Tao: “Direct conductance measurement of single DNA molecules in aqueous solution”, Nano Lett., Vol. 4, (2004), pp. 1105–1108. http://dx.doi.org/10.1021/nl0494295[Crossref]
  • [24] R.M.M. Smeets, U.F. Keyser, D. Krapf, M.-Y. Wu, N.H. Dekker and C. Dekker: “Salt dependence of ion transport and DNA translocation through solid-state nanopores”, Nano Lett., Vol. 6, (2006), pp. 89–95. http://dx.doi.org/10.1021/nl052107w[Crossref]
  • [25] A.Yu. Kasumov, M. Kociak, S. Gueron, B. Reulet, V.T. Volkov, D.V. Klinov and H. Bouchiat: “Proximity-induced superconductivity in DNA”, Science, Vol. 291, (2001), pp. 280–282. http://dx.doi.org/10.1126/science.291.5502.280[Crossref]
  • [26] G. Cuniberti, L. Craco, D. Porath and C. Dekker: “Backbone-induced semiconducting behavior in short DNA wires”, Phys. Rev. B, Vol. 65, (2002), art. R241314.
  • [27] R. Gutiérrez, S. Mandal and G. Cuniberti: “Quantum transport through a DNA wire in a dissipative environment”, Nano Lett., Vol. 5, (2005), pp. 1093–1097. http://dx.doi.org/10.1021/nl050623g[Crossref]
  • [28] X.-Q. Li and Y.J. Yan: “Electrical transport through individual DNA molecules”, Appl. Phys. Lett., Vol. 79, (2001), pp. 2190–2192. http://dx.doi.org/10.1063/1.1407860[Crossref]
  • [29] M. Zwolak and M. Di Ventra: “DNA spintronics”, Appl. Phys. Lett., Vol. 81, (2002), pp. 925–927. http://dx.doi.org/10.1063/1.1496504[Crossref]
  • [30] C. Kergueris, J.-P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga and C. Joachim: “Electron transport through a metal/molecule/metal junction”, Phys. Rev. B, Vol. 59, (1999), pp. 12505–12513. http://dx.doi.org/10.1103/PhysRevB.59.12505[Crossref]
  • [31] J. von Delft and D.C. Ralph: “Spectroscopy of discrete energy levels in ultrasmall metallic grains”, Phys. Rep., Vol. 345, (2001), pp. 61–173. http://dx.doi.org/10.1016/S0370-1573(00)00099-5[Crossref]
  • [32] E. Bonet, M.M. Deshmukh and D.C. Ralph: “Solving rate equations for electron tunneling via discrete quantum states”, Phys. Rev. B, Vol. 65, (2002), art. 045318.
  • [33] J. Lehmann, G.-L. Ingold and P. Hänggi: “Incoherent charge transport through molecular wires: interplay of Coulomb interaction and wire population”, Chem. Phys., Vol. 281, (2002), pp. 199–209. http://dx.doi.org/10.1016/S0301-0104(02)00344-0[Crossref]
  • [34] K. Walczak: “Coulomb blockade in molecular quantum dots”, Cent. Eur. J. Phys., Vol. 4, (2006), pp. 8–18. http://dx.doi.org/10.1007/s11534-005-0002-x[Crossref]
  • [35] Yu.A. Berlin, A.L. Burin and M.A. Ratner: “On the long-range charge transfer in DNA”, J. Phys. Chem. A, Vol. 104, (2000), pp. 443–445. http://dx.doi.org/10.1021/jp9933323[Crossref]
  • [36] Yu.A. Berlin, A.L. Burin and M.A. Ratner: “Charge hopping in DNA”, J. Am. Chem. Soc., Vol. 123, (2001), pp. 260–268. http://dx.doi.org/10.1021/ja001496n[Crossref]
  • [37] M. Bixon and J. Jortner: “Long-range and very long-range charge transport in DNA”, Chem. Phys., Vol. 281, (2002), pp. 393–408. http://dx.doi.org/10.1016/S0301-0104(02)00495-0[Crossref]
  • [38] M. Bixon and J. Jortner: “Incoherent charge hopping and conduction in DNA and long molecular chains”, Chem. Phys., Vol. 319, (2005), pp. 273–282. http://dx.doi.org/10.1016/j.chemphys.2005.05.013[Crossref]
  • [39] J.C. Ellenbogen and J.C. Love: “Architectures for molecular electronic computers: I. Logic structures and an adder designed from molecular electronic diodes”, Proc. IEEE, Vol. 88, (2000), pp. 386–426. http://dx.doi.org/10.1109/5.838115[Crossref]
  • [40] A. Aviram and M.A. Ratner: “Molecular Rectifiers”, Chem. Phys. Lett., Vol. 29, (1974), pp. 277–283. http://dx.doi.org/10.1016/0009-2614(74)85031-1[Crossref]
  • [41] R.M. Metzger: “Unimolecular electrical rectifiers”, Chem. Rev., Vol. 103, (2003), pp. 3803–3834. http://dx.doi.org/10.1021/cr020413d[Crossref]
  • [42] W. Tian, S. Datta, S. Hong, R.G. Reifenberger, J.I. Henderson and C.P. Kubiak: “Resistance of molecular nanostructures”, Physica E, Vol. 1, (1997), pp. 304–309. http://dx.doi.org/10.1016/S1386-9477(97)00065-9[Crossref]
  • [43] C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones II and J.M. Tour: “Nanoscale metal/self-assembled monolayer/metal heterostructures”, Appl. Phys. Lett., Vol. 71, (1997), pp. 611–613. http://dx.doi.org/10.1063/1.120195[Crossref]
  • [44] D. Porath, Y. Levi, M. Tarabiah and O. Millo: “Tunneling spectroscopy of isolated C60 molecules in the presence of charging effects”, Phys. Rev. B, Vol. 56, (1997), pp. 9829–9833. http://dx.doi.org/10.1103/PhysRevB.56.9829[Crossref]
  • [45] W.B. Davis, W.A. Svec, M.A. Ratner and M.R. Wasielewski: “Molecular-wire behaviour in p-phenylenevinylene oligomers”, Nature (London), Vol. 396, (1998), pp. 60–63. http://dx.doi.org/10.1038/25090[Crossref]
  • [46] G.S.M. Tong, I.V. Kurnikov and D.N. Beratan: “Tunneling energy effects on GC oxidation in DNA”, J. Phys. Chem. B, Vol. 106, (2002), pp. 2381–2392.
  • [47] C. Wan, T. Fiebig, S.O. Kelley, C.R. Treadway, J. K. Barton and A.H. Zewail: “Femtosecond dynamics of DNA-mediated electron transfer”, Proc. Natl. Acad. Sci. USA, Vol. 96, (1999), pp. 6014–6019. http://dx.doi.org/10.1073/pnas.96.11.6014[Crossref]
  • [48] S.V. Rakhmanova and E.M. Conwell: “Polaron motion in DNA”, J. Phys. Chem. B, Vol. 105, (2001), pp. 2056–2061. http://dx.doi.org/10.1021/jp0036285[Crossref]
  • [49] V.D. Lakhno: “Soliton-like solutions and electron transfer in DNA”, J. Biol. Phys., Vol. 26, (2000), pp. 133–147. http://dx.doi.org/10.1023/A:1005275211233[Crossref]
  • [50] N.C. Seeman: “DNA nanotechnology: novel DNA constructions”, Ann. Rev. Biophys. Biomol. Struct., Vol. 27, (1998), pp. 225–248. http://dx.doi.org/10.1146/annurev.biophys.27.1.225[Crossref]
  • [51] S.-J. Park, A.A. Lazarides, C.A. Mirkin, P.W. Brazis, C.R. Kannewurf and R.L. Letsinger: “The electrical properties of gold nanoparticle assemblies linked by DNA”, Angew. Chem. Int. Ed., Vol. 39, (2000), pp. 3845–3848. http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3845::AID-ANIE3845>3.0.CO;2-O[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-006-0018-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.