Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 12 | 12 | 1271-1279
Tytuł artykułu

New genetic insights to consider coffee waste as feedstock for fuel, feed, and chemicals

Treść / Zawartość
Warianty tytułu
Języki publikacji
Caffeine is a natural plant product found in many drinks, including coffee, tea, soft and energy drinks. Due to caffeine’s presence in the environment, microorganisms have evolved two different mechanisms to live on caffeine. The genetic maps of the caffeine N-demethylation pathway and C-8 oxidation pathway have been discovered in Pseudomonas putida CBB5 and Pseudomonas sp. CBB1, respectively. These genes are the only characterized bacterial caffeine-degrading genes, and may be of great value in producing fine chemicals, biofuels, and animal feed from coffee and tea waste. Here, we present preliminary results for production of theobromine and 7-methylxanthine from caffeine and theobromine, respectively, by two strains of metabolically engineered E. coli. We also demonstrate complete decaffeination of tea extract by an immobilized mixed culture of Klebsiella and Rhodococcus cells. These processes provide a first level demonstration of biotechnological utilization of coffee and tea waste.

Opis fizyczny
  • [1] Statistics on Coffee, Historical Data, All exporting countries total production crop years 2010/11 to 2012/13 (International Coffee Organization, London, UK, 2013)
  • [2] Top 25 agricultural import commodities, with level of processing, by calendar year (United States Department of Agriculture, Washington D.C., USA, 2013) 1
  • [3] Data for calendar year commencing: 2011, data sheet (International Coffee Organization, USA, 2011)
  • [4] M.R. Adams, J. Dougan, In: R.J. Clarke. R. Macrae, (Eds.), Waste Products, Coffee: Volume 2. Technology (Elsevier Applied Science Publishers, Ltd, Essex, England, 1987) 257–291
  • [5] A. Pandey, C.R. Soccol, P. Nigam, D. Brand. R. Mohan, S. Roussos, Biochem. Eng. J. 6, 153 (2000)[Crossref]
  • [6] N. Kondamudi, S.K. Mohapatra, M. Misra, J. Agric. Food Chem. 56, 11757 (2008)[Crossref]
  • [7] G.R. Waller, Biologia Plantarum 31, 418 (1989)[Crossref]
  • [8] R.G. Hollingsworth, J.W. Amrstrong, E. Campbell, Nature 361, 1763 (1980)
  • [9] J.A. Nathanson, Science 226, 184 (1984)[Crossref]
  • [10] A.S. Franca, L.S. Oliveira, In: G.S. Ashworth, P. Azevedo (Eds.), Agricultural Wastes, Coffee processing solid wastes: Current uses and future perspectives (Nova Science Publishers, Inc., New York, U. S. A., 2009) 171–189
  • [11] R. Bressani, in: J.E. Braham, R. Bressani (Eds.), Coffee Pulp: Composition, Technology, and Utilization, Potential uses of coffee-berry by-products (International Development Research Centre, Ottawa, Ontario, Canada, 1979) 17–24
  • [12] C. Porres, D. Alvarez, J. Calzada, Biotechnol. Adv. 11, 519 (1993)[Crossref]
  • [13] C.L. Yu, T.M. Louie, R. Summers, Y. Kale, S. Gopishetty, M. Subramanian, J. Bacteriol. 191, 4624 (2009)[Crossref]
  • [14] R.M. Summers, T.M. Louie, C.L. Yu. M. Subramanian, Microbiology 157, 583 (2011)[Crossref]
  • [15] R.M. Summers, T.M. Louie, C.L. Yu, L. Gakhar, K.C. Louie, M. Subramanian, J. Bacteriol. 194, 2041 (2012)[Crossref]
  • [16] R.M. Summers, J.L. Seffernick, E.M. Quandt. C.L. Yu, J.E. Barrick, M.V. Subramanian. J. Bacteriol. 195, 3933 (2013)[Crossref]
  • [17] C.L. Yu, Y. Kale, S. Gopishetty, T.M. Louie. M. Subramanian, J. Bacteriol. 190, 772 (2008)[Crossref]
  • [18] S.K. Mohanty, C.L. Yu, S. Das, T.M. Louie. L. Gakhar, M. Subramanian, J. Bacteriol. 194, 3872 (2012)[Crossref]
  • [19] C.A. Woolfolk, J. Bacteriol. 123, 1088 (1975)
  • [20] R. Blecher, F. Lingens, Hoppe-Seyler’s Z. Physiol. Chem. 358, 807 (1977)[Crossref]
  • [21] Y. Asano, T. Komeda, H. Yamada, Biosci., Biotechnol., Biochem. 58, 2303 (1993)[Crossref]
  • [22] M. Glück, F. Lingens, Appl. Microbiol. Biotechnol. 28, 59 (1988)[Crossref]
  • [23] O.F.P. Sideso, A.C. Marvier, N.A. Katerelos. P.W. Goodenough, Int. J. Food Sci. Tech. 36, 693 (2001)[Crossref]
  • [24] W.J. Middelhoven, C.M. Bakker, Eur. J. Appl. Microbial. Biotechnol. 15, 214 (1982)[Crossref]
  • [25] D.M. Yamaoka-Yano, P. Mazzafera, Rev. Microbiol. 30, 62 (1999)[Crossref]
  • [26] W. Hohnloser, B. Osswal, F. Lingens, Hoppe-Seyler’s Z. Physiol. Chem. 361, 1763 (1980)[Crossref]
  • [27] P. Mazzafera, O. Olsson, G. Sandberg, Microb. Ecol. 31, 199 (1996)[Crossref]
  • [28] K.M. Madyastha, G.R. Sridhar, Biochem. Biophys. Res. Commun. 249, 178 (1998)[Crossref]
  • [29] K.M. Madyastha, G.R. Sridhar, B.B. Vadiraja. Y.S. Madhavi, Biochem. Biophys. Res. Commun. 263, 460 (1999)[Crossref]
  • [30] B.R. Mohapatra, N. Harris, R. Nordin, A. Mazumder, J. Biotechnol. 125, 319 (2006)[Crossref]
  • [31] V.R. Sarath Babu, S. Patra, M.S. Thakur. N.G. Karanth, M.C. Varadaraj, Enzyme Microb. Technol. 37, 617 (2005)[Crossref]
  • [32] S.S. Dash, S.N. Gummadi, J. Basic Microbiol. 48, 227 (2008)[Crossref]
  • [33] C.A. Woolfolk, J.S. Downard, J. Bacteriol. 130, 1175 (1977)
  • [34] S.K. Mohanty, A. Genetic characterization of the caffeine C-8 oxidation pathway in Pseudomonas sp. CBB1. B. Validation of caffeine dehydrogenase as a suitable enzyme for a rapid caffeine diagnostic test, PhD thesis (University of Iowa, Iowa City, Iowa, U.S.A., 2013)
  • [35] A.J. Link, D. Phillips, G.M. Church, J. Bacteriol. 179, 6228 (1997)
  • [36] C.T. Chung, S.L. Niemela, R.H. Miller, Proc. Natl. Acad. Sci. U. S. A. 86, 2172 (1989)[Crossref]
  • [37] W. Seubert, J. Bacteriol. 79, 426 (1960)
  • [38] S.R. Gopishetty, T.M. Louie, C.L. Yu. M.V. Subramanian, In: H.N. Thatoi, B.B. Mishra (Eds.), Microbial degradation of caffeine, methylxanthines, and its biotechnological applications, Microbial Biotechnology: Methods and Applications (Narosa Publishing House Pvt, Ltd, New Delhi, India, 2012) 44–67
  • [39] P. Mazzafera, Scientia Agricola 59, 815 (2002)[Crossref]
  • [40] S. Roussos, L. Hannibal, M.A. Aquiahuatl. M.R.T. Hernandes, S. Marakis, J. Food Sci. Technol. 31, 316 (1994)
  • [41] M. Hakil, F. Voisinet, G.V. Gonzalez, C. Augur, Process Biochem. 35, 103 (1999)[Crossref]
  • [42] D. Brand, A. Pandey, S. Roussos, C.R. Soccol, Enzyme Microb. Technol. 27, 127 (2000)[Crossref]
  • [43] C.V. Tagliari, R.K. Sanson, A. Zanette, R. Teixeira Franco, C.R. Soccol, Braz. J. Microbiol. 34, 102 (2003)[Crossref]
  • [44] S.N. Gummadi, B. Bhavya, N. Ashok, Appl. Microbiol. Biotechnol. 93, 545 (2012)[Crossref]
  • [45] K. Narasimharao, S. Mohapatra, M. Misra, J. Agric. Food Chem. 56, 11757 (2008)[Crossref]
  • [46] Y. Nishida, J. Pharm. Pharmacol. 43, 885 (1991)[Crossref]
  • [47] V. Schlotte, A. Sevanian, P. Hochstein. K.U. Weithmann, Free Radical Biol. Med. 25, 839 (1998)[Crossref]
  • [48] E.M. Quandt, M.J. Hammerling, R.M. Summers, P.B. Otoupal, B. Slater, R.N. Alnahhas, A. Dasgupta, J.L. Bachman, M.V. Subramanian, J.E. Barrick, ACS Synth. Biol. 2, 301 (2013)[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.