PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 7 | 788-795
Tytuł artykułu

Azobenzene functionalized mesoporous AlMCM-41-type support for drug release applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A light-responsive material, aminoazobenzene functionalized AlMCM-41, was synthesized and characterized in order to be used as carrier for drug delivery devices. The light-induced hydrophobic-hydrophilic switching effect of azobenzene functionalized aluminosilicate was exploited in the release of irinotecan, a cytostatic drug. To obtain the functionalized mesoporous support, an azobenzene-silane precursor was synthesized by coupling 4-(4′-aminophenylazo) benzoic acid with 3-aminopropyl triethoxysilane and further grafted on AlMCM-41. The azobenzene functionalized mesoporous aluminosilicate exhibited no significant toxicity towards murine fibroblast healthy cells and a reduced toxicity towards murine melanocyte cells. The hybrid materials obtained by loading irinotecan on AlMCM-41 (wt. 35.4%) and aminoazobenzene modified AlMCM-41 (wt. 22%), respectively were characterized by FTIR, small and wide angle XRD, N2 adsorption-desorption isotherms and DSC analyses. A two-fold increase in the drug release rate from azobenzene functionalized aluminosilicate in phosphate buffer solution under UV irradiation was noticed, as compared with dark conditions. Moreover, the azobenzene functionalization of AlMCM-41 significantly increased the irinotecan delivery rate and total cumulative release in comparison with the pristine AlMCM-41 in similar conditions.
Wydawca

Czasopismo
Rocznik
Tom
12
Numer
7
Strony
788-795
Opis fizyczny
Daty
wydano
2014-07-01
online
2014-04-30
Twórcy
  • University “Politehnica” of Bucharest
  • University “Politehnica” of Bucharest
  • University “Politehnica” of Bucharest
  • Romanian Academy of Sciences
Bibliografia
  • [1] M. Colilla, B. Gonzalez, M. Vallet-Regi, Biomat. Sci. 1, 114 (2013) http://dx.doi.org/10.1039/c2bm00085g[Crossref]
  • [2] Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Chem. Soc. Rev. 41, 2590 (2012) http://dx.doi.org/10.1039/c1cs15246g[Crossref]
  • [3] A. Popat, S.B. Hartono, F. Stahr, J. Liu, S.Z. Qiao, G. Qing Lu, Nanoscale 3, 2801 (2011) http://dx.doi.org/10.1039/c1nr10224a[Crossref]
  • [4] J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.Y. Lin, Small 6, 1952 (2010) http://dx.doi.org/10.1002/smll.200901789[Crossref]
  • [5] F. Tang, L. Li, D. Chen, Adv. Mater. 24, 1504 (2012) http://dx.doi.org/10.1002/adma.201104763[Crossref]
  • [6] M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Edit. 46, 7548 (2007) http://dx.doi.org/10.1002/anie.200604488[Crossref]
  • [7] T. Tanaka, H. Ogino, M. Iwamoto, Langmuir 23, 11417 (2007) http://dx.doi.org/10.1021/la7019236[Crossref]
  • [8] N. Liu, Z. Chen, D.R. Dunphy, Y.-B. Jiang, R.A. Assink, C.J. Brinker, Angew. Chem. Int. Edit. 42, 1731 (2003) http://dx.doi.org/10.1002/anie.200250189[Crossref]
  • [9] J. Lu, E. Choi, F. Tamanoi, J.I. Zink, Small 4, 421 (2008) http://dx.doi.org/10.1002/smll.200700903[Crossref]
  • [10] S. Angelos, E. Choi, F. Vögtle, L. De Cola, J.I. Zink, J. Phys. Chem. C 111, 6589 (2007) http://dx.doi.org/10.1021/jp070721l[Crossref]
  • [11] M. Alvaro, M. Benitez, D. Das, H. Garcia, E. Peris, Chem. Mater. 17, 4958 (2005) http://dx.doi.org/10.1021/cm050837z[Crossref]
  • [12] Y. Zhu, M. Fujiwara, Angew. Chem. Int. Edit. 46, 2241 (2007) http://dx.doi.org/10.1002/anie.200604850[Crossref]
  • [13] Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, W. Tan, ACS Nano 6, 6337 (2012) http://dx.doi.org/10.1021/nn3018365[Crossref]
  • [14] D.P. Ferris, Y.-L. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 131, 1686 (2009) http://dx.doi.org/10.1021/ja807798g[Crossref]
  • [15] Y.-W. Yang, Med. Chem. Comm. 2, 1033 (2011) http://dx.doi.org/10.1039/c1md00158b[Crossref]
  • [16] R.H. El Halabieh, O. Mermut, C.J. Barrett, Pure Appl. Chem. 76, 1445 (2004) http://dx.doi.org/10.1351/pac200476071445[Crossref]
  • [17] X. Pei, A. Fernandes, B. Mathy, X. Laloyaux, B. Nysten, O. Riant, A.M. Jonas, Langmuir 27, 9403 (2011) http://dx.doi.org/10.1021/la201526u[Crossref]
  • [18] C. Song, R. Griffin, H. Park, In: B. Teicher (Ed.), Cancer Drug Resistance (Humana Press, Totowa, New Jersey, 2006) 21
  • [19] K.H. Schündehütte, Houben-Weyl Methoden der Organischen Chemie (Thieme, Stuttgart, 196510/3 (in German)
  • [20] G.B. Demirel, N. Dilsiz, M. Cakmak, T. Caykara, J. Mater. Chem. 21, 3189 (2011) http://dx.doi.org/10.1039/c0jm03528a[Crossref]
  • [21] F. Laduron, V. Tamborowski, L. Moens, A. Horvath, D. De Smaele, S. Leurs, Org. Process. Res. Dev. 9, 102 (2005) http://dx.doi.org/10.1021/op049812w[Crossref]
  • [22] G. Maria, D. Berger, S. Nastase, I. Luta, Micropor. Mesopor. Mat. 149, 25 (2012) http://dx.doi.org/10.1016/j.micromeso.2011.09.005[Crossref]
  • [23] A.H. Janssen, A.J. Koster, K.P. de Jong, J. Phys. Chem. B 106, 11905 (2002) http://dx.doi.org/10.1021/jp025971a[Crossref]
  • [24] M.J.B. Souza, A.S. Araujo, A.M.G. Pedrosa, B.A. Marinkovic, P.M. Jardim, E. Morgado Jr, Mater. Lett. 60, 2682 (2006) http://dx.doi.org/10.1016/j.matlet.2006.01.066[Crossref]
  • [25] S. Nastase, L. Bajenaru, C. Matei, R. A. Mitran, D. Berger, Micropor. Mesopor. Mat. 182, 32 (2013) http://dx.doi.org/10.1016/j.micromeso.2013.08.018[Crossref]
  • [26] D. Arcos, A. López-Noriega, E. Ruiz-Hernández, O. Terasaki, M. Vallet-Regí, Chem. Mater. 21, 1000 (2009) http://dx.doi.org/10.1021/cm801649z[Crossref]
  • [27] Q. He, J. Shi, F. Chen, M. Zhu, L. Zhang, Biomater. 31, 3335 (2010) http://dx.doi.org/10.1016/j.biomaterials.2010.01.015[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-014-0534-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.