Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Artificial neural networks have proven to be a powerful tool for solving classification problems. Some difficulties still need to be overcome for their successful application to chemical data. The use of supervised neural networks implies the initial distribution of patterns between the pre-determined classes, while attribution of objects to the classes may be uncertain. Unsupervised neural networks are free from this problem, but do not always reveal the real structure of data. Classification algorithms which do not require a priori information about the distribution of patterns between the pre-determined classes and provide meaningful results are of special interest. This paper presents an approach based on the combination of Kohonen and probabilistic networks which enables the determination of the number of classes and the reliable classification of objects. This is illustrated for a set of 76 solvents based on nine characteristics. The resulting classification is chemically interpretable. The approach proved to be also applicable in a different field, namely in examining the solubility of C60 fullerene. The solvents belonging to the same group demonstrate similar abilities to dissolve C60. This makes it possible to estimate the solubility of fullerenes in solvents for which there are no experimental data
Czasopismo
Rocznik
Tom
Numer
Strony
594-603
Opis fizyczny
Daty
wydano
2014-05-01
online
2014-02-21
Twórcy
autor
- Bogomolets National Medical University
autor
- V. N. Karazin Kharkiv National University, kholin@karazin.ua
Bibliografia
- [1] Yu. Vlasov, A. Legin, A. Rudnitskaya, C. Di Natale, A. D’Amico, Pure Appl. Chem. 77, 1965 (2005) http://dx.doi.org/10.1351/pac200577111965[Crossref]
- [2] W. A. Hardcastle, Qualitative analysis: a guide to best practice (Royal Society of Chemistry, Cambridge, 1998)
- [3] B. L. Milman, Trends Anal. Chem. 24, 493 (2005) http://dx.doi.org/10.1016/j.trac.2005.03.013[Crossref]
- [4] M. J. Adams, Chemometrics in analytical spectroscopy, 2nd edition (Royal Society of Chemistry, Cambridge, 2004)
- [5] Ph. K. Hopke, Anal. Chim. Acta. 500, 365 (2003) http://dx.doi.org/10.1016/S0003-2670(03)00944-9[Crossref]
- [6] E. F. Boffo, L.A. Tavares, A.C.T. Tobias, M.M.C. Ferreira, A.G. Ferreira, Food Sci. Technol. 49, 55 (2012)
- [7] S. S. Souza, A.G. Cruz, E.H.M. Walter, J.A.F. Faria, R.M.S. Celeghini, M.M.C. Ferreira, D. Granato, A. de S. Sant’Ana, Food Chem. 124, 692 (2011) http://dx.doi.org/10.1016/j.foodchem.2010.06.074[Crossref]
- [8] P. K. Shivaswamy, T. Jebara, J. Mach. Learn. Res. 11, 747 (2010)
- [9] R. Wehrens, Chemometrics with R: multivariate data analysis in the natural sciences and life sciences (Springer, Heidelberg, Dordrecht, London, New York, 2011) http://dx.doi.org/10.1007/978-3-642-17841-2[Crossref]
- [10] A. de Juan, G. Fonrodona, E. Casassas, Trends Anal. Chem. 16, 52 (1997) http://dx.doi.org/10.1016/S0165-9936(96)00079-9[Crossref]
- [11] P. Gramatica, N. Navas, R. Todeschini, Trends Anal. Chem. 18, 461 (1999) http://dx.doi.org/10.1016/S0165-9936(99)00115-6[Crossref]
- [12] V. Simeonov, P. Simeonova, S. Tsakovskii, V. Lovchinov, J. Water Resource Protect. 2, 353 (2010) http://dx.doi.org/10.4236/jwarp.2010.24041[Crossref]
- [13] R. Skorek, M. Jablonska, M. Polowniak, A. Kita, P. Janoska, F. Buhl, Cent. Eur. J. Chem. 10, 71 (2010) http://dx.doi.org/10.2478/s11532-011-0110-y[Crossref]
- [14] J. S. dos Santos, N.S. dos Santos, M.L.P. dos Santos, S.N. dos Santos, J.J. de Jesus Lacerda, J. Braz. Chem. Soc. 19, 502 (2008) http://dx.doi.org/10.1590/S0103-50532008000300018[Crossref]
- [15] R. M. Balabin, R.Z. Safieva, E.I. Lomakina, Anal. Chim. Acta 671, 27 (2010) http://dx.doi.org/10.1016/j.aca.2010.05.013[Crossref]
- [16] R. M. Alonso-Salces, C. Herrero, A. Barranco, L.A. Berrueta, B. Gallo, F. Vicente, Food Chem. 93, 113 (2005) http://dx.doi.org/10.1016/j.foodchem.2004.10.013[Crossref]
- [17] P. H. Fidencio, I. Ruisanchez, R.J. Poppi, Analyst 126, 2194 (2001) http://dx.doi.org/10.1039/b107533k[Crossref]
- [18] R. M. Balabin, R.Z. Safieva, Fuel. 87, 2745 (2008) http://dx.doi.org/10.1016/j.fuel.2008.02.014[Crossref]
- [19] O. F. Galao, D. Borsato, J.P. Pinto, J.V. Visentainer, M.C. Carrao-Panizzi, J. Braz. Chem. Soc. 22, 142 (2011) http://dx.doi.org/10.1590/S0103-50532011000100019[Crossref]
- [20] Y. Marcus, Chem. Soc. Rev. 22, 409 (1993) http://dx.doi.org/10.1039/cs9932200409[Crossref]
- [21] Ch. Reichardt, Solvents and solvent effects in organic chemistry, 3rd edition (Wiley & Co. KGaA, Weinhem, 2003)
- [22] V. J. Barwick, Trends Anal. Chem. 16, 293 (1998)
- [23] F. Marini, J. Zupan, A.L. Magri, Anal. Chim. Acta 544, 306 (2005) http://dx.doi.org/10.1016/j.aca.2004.12.026[Crossref]
- [24] J. Zupan, M. Novic, I. Ruisanchez, Chemometr. Intell. Lab. 38, 1 (1997) http://dx.doi.org/10.1016/S0169-7439(97)00030-0[Crossref]
- [25] C. Fyfe, Artificial neural networks (Department of Computing and Information Systems, University of Paisley, Scotland, 1996)
- [26] W. J. Melssen, J.R.M. Smits, L.M.C. Buydens, G. Kateman, Chemometr. Intell. Lab. 23, 267 (1994) http://dx.doi.org/10.1016/0169-7439(93)E0036-4[Crossref]
- [27] D. Anderson, G. McNeill, Artificial neural networks technology (Kaman Sciences Corporation, New York, 1992)
- [28] M. M. Gupta, L. Jin, N. Homma, Static and dynamic neural networks: from fundamentals to advanced theory (Wiley & Sons, New Jersey, 2003) http://dx.doi.org/10.1002/0471427950[Crossref]
- [29] W. Tylmon, G.J. Anders, Energy 31, 2874 (2006) http://dx.doi.org/10.1016/j.energy.2005.10.027[Crossref]
- [30] Y. Marcus, J. Phys. Chem. B 101, 8617 (1997) http://dx.doi.org/10.1021/jp970671s[Crossref]
- [31] R. A. van den Berg, H.C.J. Hoefsloot, J.A. Westerhuis, A.K. Smilde, M.J. van der Werf, BMC Genomics 7, 142 (2006) http://dx.doi.org/10.1186/1471-2164-7-142[Crossref]
- [32] K. R. Beebe, J.P. Randy, M.B. Seasholtz, Chemometrics: a practical guide (Wiley & Sons, USA, 1998)
- [33] M. Dong, N. Wang, Appl. Math. Model. 35, 1024 (2011) http://dx.doi.org/10.1016/j.apm.2010.07.048[Crossref]
- [34] V. J. Barwick, Trends Anal. Chem. 16, 293 (1997) http://dx.doi.org/10.1016/S0165-9936(97)00039-3[Crossref]
- [35] M. Chastrette, M. Rajzmann, M. Chanon, K.F. Purcell, J. Am. Chem. Soc. 107, 1 (1985) http://dx.doi.org/10.1021/ja00287a001[Crossref]
- [36] A. R. Katritzky, T. Tamm, Y. Wang, M. Karelson, J. Chem. Inf. Comput. Sci. 39, 692 (1999) http://dx.doi.org/10.1021/ci980226+[Crossref]
- [37] A. R. Katritzky, D.C. Fara, M. Kuanar, E. Hur, M. Karelson, J. Phys. Chem. A 109, 10323 (2005) http://dx.doi.org/10.1021/jp050395e[Crossref]
- [38] Y. Marcus, The properties of solvents. Wiley Series in Solution Chemistry (Wiley, Chichester, 1998) Vol. Vol. 4
- [39] K. N. Semenov, N.A. Charykov, V.A. Keskinov, A.K. Piartman, A.A. Blokhin, A.A. Kopyrin, J. Chem. Eng. Data 55, 13 (2010) http://dx.doi.org/10.1021/je900296s[Crossref]
- [40] N. O. Mchedlov-Petrossyan, Chem. Rev. 113, 5149 (2013) http://dx.doi.org/10.1021/cr3005026[Crossref]
- [41] I. Z. Kiss, G. Mandi, M.T. Beck, J. Phys. Chem. A 104, 8081 (2000) http://dx.doi.org/10.1021/jp000739v[Crossref]
- [42] H. Liu, X. Yao, R. Zhang, M. Liu, Z. Hu, B. Fan, J. Phys. Chem. B 109, 20565 (2005) http://dx.doi.org/10.1021/jp052223n[Crossref]
- [43] F. Gharagheizi, R.F. Alamdari, Fullerenes, Nanotubes, and Carbon Nanostructures 16, 40 (2008) http://dx.doi.org/10.1080/15363830701779315[Crossref]
- [44] T. Petrova, B.F. Rasulev, A.A. Toropov, D. Leszczynska, J. Leszczynski, J. Nanopart. Res. 13, 3235 (2011) http://dx.doi.org/10.1007/s11051-011-0238-x[Crossref]
- [45] S. Yousefinejad, F. Honarasa, F. Abbasitabar, Z. Arianezhad, J. Solution Chem. 42, 1620 (2013) http://dx.doi.org/10.1007/s10953-013-0062-2[Crossref]
- [46] M. T. Beck, G. Mandi, Fullerenes, Nanotubes, and Carbon Nanostructures 5, 291 (1997)
- [47] R. S. Ruoff, D.S. Tse, R. Malhotra, D.C. Lorents, J. Phys. Chem. 97, 3379 (1993) http://dx.doi.org/10.1021/j100115a049[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-014-0514-6